• Title/Summary/Keyword: ${\alpha}$-Glucosidase

Search Result 679, Processing Time 0.031 seconds

Hypoglycemic Effect of Fermented Soymilk Extract in STZ-induced Diabetic Mice

  • Yi, Na-Ri;Hwang, Ji-Young;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.1
    • /
    • pp.8-13
    • /
    • 2009
  • This study investigated the hypoglycemic effect of fermented soymilk extract (FSE) in STZ-induced diabetic mice. FSE was prepared via fermentation of soymilk with Bacillus subtilis followed by methanol extraction. The hypoglycemic effect was determined by inhibitory activities against ${\alpha}$-glucosidase and ${\alpha}$-amylase as well as the alleviation of postprandial glucose level. The non-fermented soymilk extract (SE) was used as control in this experiment. FSE showed higher (p<0.05) inhibitory activities than SE against ${\alpha}$-glucosidase and ${\alpha}$-amylase. The $IC_{50}$ values of FSE for ${\alpha}$-glucosidase and ${\alpha}$-amylase were 0.77 ancd 0.94 mg/mL, respectively, which were comparable or even superior to those of acarbose (0.79 and 0.68 mg/mL, respectively). In addition, a further suppression on the postprandial blood glucose levels were observed in the FSE than SE group for both STZ-induced diabetic mice and normal mice. Furthermore, FSE significantly lowered the incremental area under the curve (AUC) in the diabetic mice and the AUC in normal mice corroborated the hypoglycemic effect of FSE (p<0.05). Results from this study suggest that FSE may help decrease the postprandial blood glucose level via inhibiting ${\alpha}$-glucosidase and ${\alpha}$-amylase and the usefulness of FSE was proven to be better than SE.

Hypoglycemic Effects of a Medicinal Herb Mixture Prepared through the Traditional Antidiabetic Prescription (당뇨 처방에 근거한 생약재 복합물의 혈당강하 효과)

  • Kim, Jung-Ok;Lee, Gee-Dong
    • Food Science and Preservation
    • /
    • v.18 no.6
    • /
    • pp.923-929
    • /
    • 2011
  • For the purpose of investigating the in vitro antidiabetic activity of a medicinal herb mixture prepared through traditional antidiabetic prescription, the study analyzed the existence of insulin-similar components and examined ${\alpha}$-amylase and ${\alpha}$-glucosidase inhibition activity. As a result of arranging the medicinal herb mixture extracts over the 3T3-L1 fibroblast in the concentration of $10{\mu}g/mL$, which confirmed that it included much of insulin sensitizer components as 151.7% in the differentiation of 3T3-L1 fibroblast. The inhibition activity against ${\alpha}$-amylase of the medicinal herb mixture extracts as hypoglycemic agent were 38.4, 31.5 and 16.6% in the concentration of 10.0, 1.0 and 0.1 mg/mL, respectively. The inhibition activity against ${\alpha}$-glucosidase of the medicinal herb mixture extracts were 81.3, 35.8 and 26.7% in the concentration of 10.0, 1.0 and 0.1 mg/mL, respectively. The inhibition activity against ${\alpha}$-glucosidase in the ethyl acetate fractions of the water and 80% ethanol extracts were 66.9% and 55.1%, respectively, the highest levels in the various solvent extracts.

Inhibitory Activity of Aralia elata Leaves on Protein Tyrosine Phosphatase 1B and α-Glucosidase (참두릅 잎의 Protein Tyrosine Phosphatase 1B와 α-Glucosidase 저해 활성)

  • Cho, Yoon Sook;Seong, Su Hui;Bhakta, Himanshu Kumar;Jung, Hee Jin;Moon, Kyung Ho;Choi, Jae Sue
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.1
    • /
    • pp.29-37
    • /
    • 2016
  • Anti-diabetic potential of the leaves of A. elata through the inhibitory activity on PTP1B and ${\alpha}$-glucosidase has not been reported. In this study, the EtOAc fraction of methanolic extract from the leaves of A. elata showed potent inhibitory activity against the PTP1B and ${\alpha}$-glucosidase with $IC_{50}$ value of $96.29{\pm}0.3$ and $264.71{\pm}14.87{\mu}g/mL$, respectively. Three known triterpenoids, oleanolic acid, oleanolic acid-28-O-${\beta}$-D-glucopyranoside and oleanolic acid-3-O-${\beta}$-D-glucopyranoside were isolated from the most active EtOAc fraction. We determined the chemical structure of these triterpenoids through comparisons of published nuclear magnetic resonance (NMR) spectroscopic data. Furthermore, we screened these triterpenoids for their ability to inhibit PTP1B and ${\alpha}$-glucosidase over a range of concentrations ($12.5-50{\mu}M$). All three terpenoids significantly inhibited PTP1B in a concentration dependent manner and oleanolic acid effectively inhibited ${\alpha}$-glucosidase. In addition, these compounds revealed potent inhibitory activity with negative binding energies toward PTP1B, showing high affinity and tight binding capacity in the molecular docking studies. Therefore, the results of the present study clearly demonstrate that A. elata leaves and its triterpenoid constituents might be beneficial in the prevention or treatment of diabetic disease.

Antioxidant Properties of Water Extract from Acorn

  • Yin, Yu;Heo, Seong-Il;Jung, Mee-Jung;Wang, Myeong-Hyeon
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.2
    • /
    • pp.70-73
    • /
    • 2007
  • Antioxidant and anti-diabetic activities of acorn were evaluated by its potential for scavenging stable DPPH free radical, inhibition of lipid peroxidation, reducing power, and inhibiton of ${\alpha}-glucosidase\;and\;{\alpha}-amylase$. The water extract of acorn exhibited strong antioxidant and antidiabetic related activities in the tested model systems. Solvent fractionation of the water extract revealed that the water fraction and the EtOAc fraction had strong antioxidant activity, and inhibitory activity on ${\alpha}-glucosidase\;and\;{\alpha}-amylase$. The water fraction exhibited higher DPPH radical scavenging activity ($EC_{50}=7.19{\mu}g/mL$) than that of ${\alpha}-tocopherol\;(EC_{50}=7.59{\mu}g/mL)$. It is considered that water extract of acorn has the potential for natural antioxidant and anti-diabetic products.

Carbohydrate, Lipid Inhibitory Activity and Antioxidant Activity of Extracts from Several Economic Resource Plants in Vitro

  • Boo, Hee-Ock;Shin, Jeoung-Hwa;Choung, Eui-Su;Bang, Mi-Ae;Choi, Kyung-Min;Song, Won-Seob
    • Korean Journal of Plant Resources
    • /
    • v.26 no.3
    • /
    • pp.374-382
    • /
    • 2013
  • The objective of this study was determined to evaluate ${\alpha}$-amylase, ${\alpha}$-glucosidase, pancreatic lipase inhibition in vitro and DPPH radical scavenging activity of the several Korean resources plants. The ${\alpha}$-amylase inhibitory activity of Salicornia herbacea, Erythronium japonicum (flower) and Phragmites communis (root) in water extract showed relatively high 62.8%, 66.5% and 69.3%, respectively. The ${\alpha}$-amylase inhibitory activity of Citrus junos (pericarp) and Cornus officinalis in methanol extract was found to have an effect with 32.8% in Citrus junos (pericarp) and 60.9% in Cornus officinalis. Corylopsis coreana in both water and methanol extract had the highest ${\alpha}$-glucosidase inhibitory activity of 81.7% and 89.5%, while the extract of Portulaca oleracea, Ficus carica and Citrus junos was not measured ${\alpha}$-glucosidase inhibitory activity at given experiment concentration. Depending on the extraction solvent and the plant species, it was observed that there was a significant difference in ${\alpha}$-glucosidase inhibitory activity. The pancreatic lipase inhibitory activity showed relatively higher in the methanol extract than water extract except pericarp of Citrus junos. The DPPH radical scavenging activity of selected plants was much difference between measured plant species, and showed that the increase was proportional to the concentration. These results suggested that selected plants had the potent biological activity on carbohydrate, lipid Inhibitory activity and antioxidant activity, therefore these plant resources could be a good materials to develop medicinal preparations, nutraceuticals or health functional foods for diabetes or obesity.

Enhancement of the Anti-hyperglycemic and Antioxidant Activities of Five Selected Beans by the Germination Process (발아에 따른 콩류의 식후 혈당 상승 억제효능과 항산화 활성)

  • Cho, Cha-Young;Choi, Hwang-Yong;Jo, Sung-Hoon;Ha, Kyoung-Soo;Chung, Ji-Sang;Jang, Hae-Dong;Kwon, Young-In
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.2
    • /
    • pp.246-252
    • /
    • 2012
  • After a mixed carbohydrate diet, inhibition of ${\alpha}$-amylase and ${\alpha}$-glucosidase involved in the digestion and absorption of carbohydrates can significantly decrease the postprandial increase of blood glucose level. In the course of screening these useful enzyme inhibitors, we selected five kinds of bean, using an in-vitro enzyme inhibition assay method. To evaluate the effect of germination process on the functionality of the bean, we investigated the inhibitory activities of the water extracts of non-germinated bean and germinated bean against ${\alpha}$-amylase and ${\alpha}$-glucosidase, relevant to postprandial hyperglycemia. We also investigated the oxygen radical absorbance capacity(ORAC), total phenolics content, and postprandial blood glucose lowering effect in rats(Sprague-Dawley rat model). Most germinated beans showed significantly higher ${\alpha}$-glucosidase inhibitory activity, compared with non-germinated beans. Among germinated beans, Glycine max had the highest ${\alpha}$-glucosidase inhibitory activity(53.3%). The water extract of germinated Phaseolus vulgaris L. had the highest ${\alpha}$-amylase inhibitory activity(95.1%), followed by Glycine max(58.7%), and Glycine max L. Merr(54.1%). Furthermore, the five germinated beans also showed high antioxidant activities in ORAC assay. Results suggested that the germination process may improve and enhance the anti-hyperglycemia potential and antioxidant activity of the bean.

Antidiabetic Activity of an Ayurvedic Formulation Chaturmukha Rasa: A Mechanism Based Study

  • Sharma, Akansha;Tiwari, Raj K;Sharma, Vikas;Pandey, Ravindra K;Shukla, Shiv Shnakar
    • Journal of Pharmacopuncture
    • /
    • v.22 no.2
    • /
    • pp.115-121
    • /
    • 2019
  • Objectives: The objective of this study was to evaluate antidiabetic activity of Chaturmukha rasa based on streptozotocin induced diabetes model, alpha amylase inhibitory activity, alpha Glucosidase inhibitory activity and inhibition of sucrase. Methods: Chaturmukha rasa was prepared as per Ayurvedic formulary. Antidiabetic activity was measured in experimentally streptozotocin induced rats. The dose was taken as 45 mg/kg, i.p. The antidiabetic activity of Chaturmukha rasa was compared Triphala Kwatha, a marketed formulation. Further In vitro $\acute{\alpha}$- Amylase Inhibitory Assay, In vitro salivary amylase Inhibitory Assay, In vitro ${\alpha}-Glucosidase$ Inhibitory Assay and In vitro Sucrase Inhibitory Assay was performed with respect to Chaturmukha rasa. The IC50 value was calculated for all the above activity. Results: Streptozotocin with Acarbose showed significant decrease in blood glucose level whereas streptozotocin with Triphala kwatha showed more decrease in blood glucose level than Streptozotocin with Acarbose. The combination of Streptozotocin + Triphala kwatha + Chaturmukha rasa showed a significant decrease in blood glucose level on 21st day. In vitro $\acute{\alpha}$- Amylase Inhibitory Assay the Chaturmukha rasa showed IC50 value $495.94{\mu}l$ when compared with Acarbose $427.33{\mu}l$, respectively. In the ${\alpha}-Glucosidase$ Inhibitory Assay Chaturmukha rasa showed IC50 value $70.93{\mu}l$ when compared with Acarbose $102.28{\mu}l$, respectively. In vitro Sucrase Inhibitory Assay Chaturmukha rasa showed IC50 value $415.4{\mu}l$ when compared with Acarbose $371.43{\mu}l$, respectively. Conclusion: This study supports that Chaturmukha rasa may inhibit diabetes by inhibition of salivary amylase or alpha Glucosidase or sucrase. This may be the mechanism by which Chaturmukha rasa inhibits diabetes. Further this study supports the usage of Chaturmukha rasa for the management of diabetes.

Isolation and Identification of a Bacillus sp. producing ${\alpha}$-glucosidase Inhibitor 1-deoxynojirimycin (알파글루코시다아제 저해제 1-deoxynojirimycin을 생산하는 Bacillus 균주의 분리 및 동정)

  • Kim, Hyun-Su;Lee, Jae-Yeon;Hwang, Kyo-Yeol;Cho, Yong-Seok;Park, Young-Shik;Kang, Kyung-Don;Seong, Su-Il
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • Thirty Streptomyces sp. and 200 Bacillus sp. isolated from Korean soils and traditional foods were screened for their abilities to inhibit ${\alpha}$-glucosidase and produce 1-deoxynojirimycin (DNJ). This screening identified a Bacillus sp. bacterium that strongly inhibited ${\alpha}$-glucosidase and produced high levels of DNJ from Chungkookjang, a Korean traditional food. The bacterium was characterized in terms of its biochemical and molecular biological properties such as sugar utilization, cellular quinone composition, cell wall fatty acid composition, and 16S rDNA sequence. In addition, scanning electron microscopy was used to visualize the morphology of the bacterium. These analyses identified the bacterium as B. subtilis, a bacterium with Generally Recognized as Safe (GRAS) status. The selected strain was named B. subtilis MORI.

Evaluation of ${\alpha}$-glucosidase Inhibitory Activity of Jeju Seaweeds Using High Throughput Screening (HTS) Technique

  • Ko, Seok-Chun;Lee, Seung-Hong;Kang, Sung-Myung;Ahn, Ginnae;Cha, Seon-Heui;Jeon, You-Jin
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.33-39
    • /
    • 2011
  • As a rapid and quick bioactive compound evaluation technique, we utilized an automatic system of high throughput screening (HTS) to investigate ${\alpha}$-glucosidase inhibitory efficacy of seaweeds, collected from Jeju Island in Korea. In this study, different extracts with methanol at $20^{\circ}C$ and $70^{\circ}C$ from 23 species of brown seaweeds and 22 species of red seaweeds and 9 species of green seaweeds were subjected to HTS. Of the brown seaweeds tested, Myelophycus simplex (20B3), Ishige sinicola (20B5, 70B5), Colpomenia sinuosa, (20B14, 70B14), Hizikia fusiforme (20B21), Ishige okamurai (70B22) and Ecklonia cava (70B23) showed significantly high ${\alpha}$-glucosidase inhibitory activity with 96.52%, 98.34%, 98.37%, 80.49%, 96.16%, 76.32%, 98.32% and 98.12%. Schizymenia dubyi (20R15), Gelidium amansii (20R16) and Polysiphonia japonica (70R22) amomng the red seaweeds showed remarkable ${\alpha}$-glucosidase inhibitory activity more than 95%. On the other hand, the green seaweeds showed poor ${\alpha}$-glucosidase inhibitory activities (less the10%) at 1 mg/ml.

Evaluation of Antioxidant and Anti-diabetic Effects of Sappan Lignum by Extraction Method (추출방법에 따른 소목 심재의 항산화 및 항당뇨 활성 평가)

  • Hong, Young Ju;Jeong, Gyeong Han;Jeong, Yun Hee;Kim, Tae Hoon
    • The Korea Journal of Herbology
    • /
    • v.32 no.6
    • /
    • pp.1-7
    • /
    • 2017
  • Objectives : The heartwood of Sappan Lignum has been used since ancient times as an ingredient in folk medicines against anti-bacterial and anti-anemia purposes. Many bioactive constituents have been derived from this biomass such as chalcones and homoisoflavonoids. In the current investigation, the antioxidant and anti-diabetic properties using DPPH and $ABTS^+$ radicals scavenging, ${\alpha}-glucosidase$, and advanced glycation end products (AGEs) inhibition assays were evaluated by different extraction methods of Sappan Lignum. Methods : In our continuing investigation for bioactive natural ingredients, the antioxidant and ${\alpha}-glucosidase$ inhibitory properties of Sappan Lignum extracts were prepared from different extraction methods and the biological efficacies were investigated in vitro. The antioxidant properties were evaluated employing radical scavenging assays using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) ($ABTS^+$) radicals. In addition, the anti-diabetic effects of Sappan Lignum extracts were tested via ${\alpha}-glucosidase$ and AGEs formation inhibitory assay. The total phenolic contents were determined using a spectrophotometric method. Results : All the tested samples showed dose-dependent radical scavenging and ${\alpha}-glucosidase$ inhibitory activities. Among the tested extracts, the 80% methanolic extract of Sappan Lignum was showed the most potent activity with an $IC_{50}$ value of $82.3{\pm}1.7{\mu}g/m{\ell}$ against DPPH radical scavenging assay. While, $ABTS^+$ radical scavenging activity of 80% methanolic extract was higher than those of other extracts. Also, ${\alpha}-glucosidase$ inhibitory and AGEs formation effects of each extacts and total phenolic contents were evaluated. Conclusions : These results suggested that Sappan Lignum can be considered as a new effective source of natural antioxidant and anti-diabetic materials.