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Abstract
This study investigated the hypoglycemic effect of fermented soymilk extract (FSE) in STZ-induced diabetic 

mice. FSE was prepared via fermentation of soymilk with Bacillus subtilis followed by methanol extraction. The 
hypoglycemic effect was determined by inhibitory activities against α-glucosidase and α-amylase as well as the 
alleviation of postprandial glucose level. The non-fermented soymilk extract (SE) was used as control in this 
experiment. FSE showed higher (p＜0.05) inhibitory activities than SE against α-glucosidase and α-amylase. The 
IC50 values of FSE for α-glucosidase and α-amylase were 0.77 and 0.94 mg/mL, respectively, which were com-
parable or even superior to those of acarbose (0.79 and 0.68 mg/mL, respectively). In addition, a further sup-
pression on the postprandial blood glucose levels were observed in the FSE than SE group for both STZ-induced 
diabetic mice and normal mice. Furthermore, FSE significantly lowered the incremental area under the curve 
(AUC) in the diabetic mice and the AUC in normal mice corroborated the hypoglycemic effect of FSE (p＜0.05). 
Results from this study suggest that FSE may help decrease the postprandial blood glucose level via inhibiting 
α-glucosidase and α-amylase and the usefulness of FSE was proven to be better than SE. 
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INTRODUCTION

Diabetic mellitus is the most serious, chronic metabol-
ic disorder and is characterized by high blood glucose 
levels (1,2). The prevalence of diabetes mellitus is in-
creasing markedly because of an aging population, in-
creased urbanization, and more sedentary lifestyles. 
Keeping blood glucose level close to normal and pre-
venting diabetic complications are the major goals in the 
treatment of diabetic mellitus (3,4). Optimizing both 
fasting blood glucose and postprandial glucose level is 
important in achieving normal glucose level (5). It was 
reported that postprandial glucose levels could be a bet-
ter marker of glycemic control than fasting blood glucose 
levels in patients with type 2 diabetes (6). The control 
of postprandial hyperglycemia is critical in the early 
therapy for diabetes (7,8). Controlling postprandial glu-
cose levels is an also important strategy in the prevention 
of type 2 diabetes (9). 

One therapeutic approach to decrease postprandial hy-
perglycemia is to retard absorption of glucose through 
inhibition of carbohydrate-hydrolyzing enzymes, e.g., α- 
amylase and α-glucosidase, in the digestive organs 
(10-13). Clinical studies have documented that α-gluco-

sidase inhibitor is effective in controlling both fasting 
and postprandial hyperglycemia in patients with diabetes 
(10,14,15), and the relative risk of type 2 diabetes could 
be decreased by α-glucosidase inhibitors in subjects with 
impaired glucose tolerance and obesity (9). Antidiabetic 
agents such as acarbose, voglibose, miglitol that inhibit 
α-glucodsidase and α-amylase are widely used in the 
treatment of patients with type 2 diabetes (16,17). 
However, chronic use of three agents could result in side 
effect such as flatulence, abdominal cramping, vomiting 
and diarrhea so that their use may be limited (18). 
Therefore, numerous studies have been carried out to 
find α-amylase and α-glucosidase inhibitors from natural 
products in an attempt to reduce any possible side effects 
of antidiabetic medicines. In addition, several α-glucosi-
dases have been recently screened and developed from 
natural sources (19-22). 

Soybean, the most important legume in Asian diet, 
is rich in high-quality protein because it is rich in lysine 
and other essential amino acids (23). In addition to pro-
teins, they contain various nutritious and functional com-
ponents such as isoflavones. The interest in the potential 
health effects of soybean and soy isoflavones is growing 
as epidemiological studies have associated a diet rich 
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in isoflavones with a lower risk of certain diseases 
(24-26). Recently, soybean and soy protein have re-
ceived much attention for their preventive effects on 
chronic disease (27-29). However, two of the main oligo-
saccharides in soybean, raffinose and stachyose, are not 
nutritionally useful because these are fermented by mi-
crobes present in the gut, the results are flatulence and 
discomfort. Fermentation of soymilk by mixed cultures 
of bifidobacteria and lactic acid bacteria has been shown 
to effectively decrease the content of these two non-
digestable oligosaccharides. Fermentation has been 
known as chemical reaction that splits complex organic 
compounds into relatively simple substances. Fermentation 
of legumes has been reported to cause a improvement 
in the nutritional value, increasing proteins digestibility, 
monosaccharide content, vitamin B family biosynthesis 
and to decrease non-nutritive factors (30). Soybean prod-
ucts fermented with Bacillus subtilis are widely con-
sumed in Asia, including Chungkookjang and natto.

B. subtilis, which is safe and grow rapidly and easy 
to be scale-up for mass culture, has been the good organ-
ism to develop a probiotic diet adjunct. Kuo et al. (31) 
reported that Bacillus subtilis-fermented natto hydro-
lyzed daidzin and genistin to daidzein and genistein, re-
spectively, in black soymilk. Soymilk is the water extract 
of soybeans. Soymilk is a colloidal dispersion extracted 
from ground soybeans; therefore, most components that 
are present in the seed are present in soymilk. During 
fermentation, the active compounds in soymilk will be 
exposed and these may have effectiveness such as anti-
diabetic activity. Therefore, this study was designed to 
examine the effect of FSE, which was made of soymilk 
fermented with Bacillus subtilis, on blood glucose levels 
in normal and streptozotocin (STZ)-induced diabetic 
mice. In the present study, we report the nutritional bene-
fit of FSE by showing the antidiabetic effect of FSE 
via the inhibition against α-glucosidase and α-amylase 
as well as the suppression of postprandial hyperglycemia. 

MATERIALS AND METHODS

Preparation of FSE
Soymilk was purchased from Donghwa food, Inc. 

(Yangsan, Korea). Soymilk was fermented by Bacillus 
subtilis isolated from Chungkookjang for 6 hr at 40oC 
under aerobic conditions. Non-fermented as well as the 
fermented soymilk were freeze-dried, powdered and ex-
tracted with ten volumes of 100% methanol for 12 hr 
three times at room temperature. The filtration of the 
extracted solution and evaporation under reduced pres-
sure yielded methanol extract. After the extract was thor-
oughly dried for complete removal of solvent, the dried 

extract was then stored in a deep freezer (-80oC).

Alpha-glucosidase inhibitory assay in vitro
The α-glucosidase inhibitory assay was done by the 

chromogenic method developed by Watanabe et al. (32) 
using a readily available yeast enzyme. Briefly, yeast 
α-glucosidase (0.7 U, Sigma) was dissolved in 100 mM 
phosphate buffer (pH 7.0) containing 2 g/L bovine serum 
albumin and 0.2 g/L NaN3 and used as an enzyme 
solution. 5 mM p-nitrophenyl-α-D-glucopyranoside in 
the same buffer (pH 7.0) was used as a substrate 
solution. The 50 μL of enzyme solution and 10 μL of 
sample dissolved in dimethylsulfoxide at the 5 mg/mL 
concentration were mixed in a well, and absorbance at 
405 nm was measured using a microplate reader. After 
incubation for 5 min, substrate solution (50 μL) was add-
ed and incubated for another 5 min at room temperature. 
The increase in absorbance from zero time was 
measured. Inhibitory activity was expressed as 100 mi-
nus relative absorbance difference (%) of test com-
pounds to absorbance change of the control where test 
solution was replaced by carrier solvent. The measure-
ments were performed in triplicate and IC50 value, i.e., 
the concentration of the extract that results in 50% in-
hibition of maximal activity, was determined. 

Alpha-amylase inhibitory assay in vitro
The α-amylase inhibitory activity was assayed in the 

same way as described for a α-glucosidase inhibitory as-
say except that porcine pancreatic amylase (100 U, 
Sigma) and blocked p-nitrophenyl-α-D-maltopentoglyco-
side (Sigma, St Louis, MO, USA) were used as enzyme 
and substrate, respectively. 

Experimental animals and diabetes inducement
Four-week old male mice (ICR, Orient, Inc., Seoul, 

Korea) were kept under a 12 hr light/12 hr dark cycle 
with room temp. controlled. The animals were main-
tained with pelleted food, while tap water was ad 
libitum. After an adjustment period of 2 weeks, diabetes 
was induced by intraperitoneal injection of STZ (60 
mg/kg i.p.) freshly dissolved in a citrate buffer (0.1 M, 
pH 4.5) for the fasted (18 hr) animals. After seven days, 
tail bleeds were performed and animals with a blood glu-
cose concentration above 250 mg/dL were considered 
to be diabetic. 

Measurement of postprandial blood glucose level
Both normal mice and STZ-induced diabetic mice 

fasted overnight were randomly divided into three 
groups. Fasted animals were deprived of food for at least 
12 hr but allowed free access to water. After overnight 
fasting, the mice were administered orally either soluble 
starch (2 g/kg body weight) alone (control) or starch with 
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non-fermented soymilk extract (SE) or fermented soy-
milk extract (FSE) (500 mg/kg body weight). Blood 
samples were taken from the tail vein at 0, 30, 60 and 
120 min. Blood glucose was measured using a gluc-
ometer (Roche Diagnostics GmbH, Germany) The blood 
glucose level was expressed in increments from the 
baseline. Incremental areas under the response curve 
(AUC) were calculated using the trapezoidal rule (33).

Statistical analysis
The data were represented as mean±SD. The stat-

istical analysis was performed with SAS program 
(version 8.02). The values among groups were evaluated 
by one-way analysis of variance (ANOVA) followed by 
post-hoc Duncan's multiple range tests. Differences be-
tween FSE and acarbose were assessed using student 
t-test.

RESULTS AND DISCUSSION

Inhibitory effect of FSE on α-glucosidase and α- 
amylase in vitro

The inhibitory effect of FSE against yeast α-glucosi-
dase is shown in Fig. 1. The FSE inhibited the α-glucosi-
dase more effectively than SE (p＜0.05). The SE in-
hibited α-glucosidase activity by 7.04, 13.53, 26.55, 
37.48, and 43.76% at the concentration of 0.1, 0.25, 0.5, 
0.75, and 1 mg/mL in vitro, respectively. The FSE in-
hibited the α-glucosidase activity by 14.2, 22.24, 41.42, 
49.87, and 54.67% at concentrations of 0.1, 0.25, 0.5, 
0.75, and 1 mg/mL in vitro, respectively. Acarbose, an 
α-glucosidase inhibitor, used as an oral hypoglycemic 
agent, inhibited the enzyme activity by 40.31% at con-
centration of 0.5 mg/mL. The α-glucosidase inhibitory 
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Fig. 1. Inhibitory activity of fermented soymilk extract on α- 
glucosidase. The final concentration of soymilk extract (SE) 
and fermented soymilk extract (FSE) were 0.1, 0.25, 0.5, 0.75, 
1 mg/mL. Each value is expressed as mean±SD in triplicate 
experiments. a-fValues with different alphabets are significantly 
different at p＜0.05 as analyzed by Duncan's multiple range 
test. The concentration of acarbose was 0.5 mg/mL. 

activity of FSE at the concentration of 0.5 mg/mL was 
comparable to that of acarbose (0.5 mg/mL). The in-
hibitory effect of FSE against α-amylase is shown in 
Fig. 2. The FSE inhibited the α-amylase more effectively 
than SE (p＜0.05). The SE inhibited α-amylase by 7.42, 
13.39, 27.74, 32.90, and 44.19% at concentration of 0.1, 
0.25, 0.5, 0.75, and 1 mg/mL in vitro, respectively. The 
FSE inhibited α-amylase by 12.58, 20.81, 30.32, 41.61, 
and 52.26% at concentration of 0.1, 0.25, 0.5, 0.75, and 
1 mg/mL in vitro, respectively. The IC50 values of FSE 
for α-glucosidase and α-amylase were 0.77 and 0.94 mg/ 
mL, respectively, which were comparable to those of 
acarbose (0.79 and 0.68 mg/mL, respectively) (Table 1).
α-Glucosidase is one of a number of glucosidases lo-

cated in the brush-border surface membrane of intestinal 
cells, and is a key enzyme of carbohydrate digestion 
(34). Similarly, α-amylase catalyses the hydrolysis of α- 
1,4-glucosidic linkages of starch, glycogen and various 
oligosaccharides and α-glucosidase further breaks down 
the disaccharides into simpler sugars, readily available 
for the intestinal absorption. The inhibition of their activ-
ity, in the digestive tract of humans, is considered to 
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Fig. 2. Inhibitory activity of fermented soymilk extract on α- 
amylase. The final concentration of soymilk extract (SE) and 
fermented soymilk extract (FSE) were 0.1, 0.25, 0.5, 0.75, 1 
mg/mL. Each value is expressed as mean±SD in triplicate 
experiments. a-fValues with different alphabets are significantly 
different at p＜0.05 as analyzed by Duncan's multiple range 
test. The concentration of acarbose was 0.5 mg/mL. 

Table 1. IC50 value1) of inhibitory activity of fermented soy-
milk extract on α-glucosidase and α-amylase

Sample IC50 (mg/mL)
α-glucosidase α-amylase

Acarbose
FSE

0.79±0.03
0.77±0.07

0.68±0.07*

0.94±0.09
1)IC50 value is the concentration of sample required for 50% 

inhibition. Each value is expressed as mean±SD (n=3). 
FSE: fermented soymilk extract.  
*Significantly different from acarbose at p＜0.05.
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be effective to control diabetes by diminishing the ab-
sorption of glucose decomposed from starch by these 
enzymes (35,36). 

Our data showed that FSE had higher inhibitory activ-
ities than SE on α-glucosidase and α-amylase, suggesting 
the fermentation of SE with B. subtilis was proven to 
be useful in terms of diabetic control. Fermentation con-
sists of modifying food by microorganisms that grow 
and reproduce and consume part of the substrate and 
enrich it with the products of their metabolism. The re-
sults suggest that the amount of compounds inhibiting 
the enzymes was increased during fermentation of 
soymilk. Soymilk is the most important traditional soy 
foods made from whole soybean. The consumption of 
soymilk is increasing because of the high awareness of 
consumers of the health beneficial functions of soy foods 
(37). Soymilk contains beneficial components for human 
health, such as soy protein, peptides, isoflavones. The 
fermentation of soymilk was suspected to result in vari-
ous compositional and functional changes as the fermen-
tation of soybeans produce a large variety of peptides 
and amino acid by different kinds of microorganism. It 
has been documented that the inhibition of α-glucosi-
dases and α-amylases resulted in a delayed carbohydrate 
digestion and glucose absorption with attenuation of 
postprandial hyperglycemia excursions (38). The in-
hibition of α-glucosidase activity in the digestive tract 
appears to be effective way to control postprandial hy-
perglycemia, which has been implicated in the develop-
ment of type 2 diabetes, pancreatic β-cell dysfunction, 
and cardiovascular disease. 

Effect of FSE on blood glucose level in vivo
The effect of FSE on blood glucose levels after a meal 

was investigated in STZ-induced diabetic and normal 
mice. Postprandial blood glucose levels of the ad-
ministered FSE were significantly lower (p＜0.05) than 
those of the control and SE in diabetic mice (Fig. 3). 
The incremental blood glucose levels of the diabetic 
mice that consumed starch alone (control) were 76.0, 
80.8 and 76.0 mg/dL at 30, 60, and 120 min, respectively. 
The incremental blood glucose levels of the mice that 
consumed FSE with starch were 36.3, 62.0, and 37.8 
mg/dL at 30, 60, and 120 min, respectively. Consumption 
of FSE significantly decreased (p＜0.05) more blood 
glucose levels than that of SE. Fig. 4 reveals the in-
cremental blood glucose levels after administration of 
FSE with a soluble starch in normal mice. Like diabetic 
mice, FSE significantly reduced (p＜0.05) the post-
prandial hyperglycemia caused by starch loading in com-
parison to the control and SE, which incremental blood 
glucose levels recorded as 21.8, 23.0, and 17.8 mg/dL 
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Fig. 3. Incremental blood glucose level after administration 
of fermented soymilk extract in STZ-induced diabetic mice. 
Control (distilled water), soymilk extract (SE, 500 mg/kg) and 
fermented soymilk extract (FSE, 500 mg/kg) were co-ad-
ministered orally with starch (2 g/kg). Each value is expressed 
as mean±SD of seven mice (n=21). a,bValues with different 
alphabets are significantly different at p＜0.05 as analyzed by 
Duncan's multiple range test.
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Fig. 4. Incremental blood glucose level after administration 
of fermented soymilk extract in normal mice. Control (distilled 
water), soymilk extract (SE, 500 mg/kg) and fermented soy-
milk extract (FSE, 500 mg/kg) were co-administered orally 
with starch (2 g/kg). Each value is expressed as mean±SD 
of seven mice (n=21). a,bValues with different alphabets are 
significantly different at p＜0.05 as analyzed by Duncan's mul-
tiple range test.

at 30, 60, and 120 min, respectively. The area under 
curve (AUC) for glucose response of administered FSE 
group (5,022±150.1 mgㆍmin/dL) was significantly 
lower (p＜0.05) than those of the control group (8,198 
±383.9 mgㆍmin/dL) and SE group (6,687±457.8 mg
ㆍmin/dL) in the diabetic mice (Table 2). 

The treatment goal for patients with type 2 diabetes 
mellitus is generally agreed to maintain near-normal lev-
els of glycemic control, both in the fasting and post-
prandial states (39). Postprandial hyperglycemia is the 
earliest metabolic abnormality to occur in type 2 diabetes 
(40). Postprandial blood glucose levels may be elevated 
in the presence of normal levels of fasting plasma glu-
cose, constituting an early stage in type 2 diabetes (41). 
As shown in Fig. 3 and Fig. 4, it seems that hypo-
glycemic effect of FSE was more effective than that of 
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Table 2. Area under the curve (AUC) of postprandial glucose 
responses of normal and streptozotocin-induced diabetic mice

Group1) AUC (mg·min/dL)
Normal mice Diabetic mice

Control
FSE
SE

6,739±183.23a

2,225±365.31b

3,165±161.95ab

8,198±383.99a

5,022±150.09b

6,687±457.83ab

1)Control (distilled water), FSE (fermented soymilk extract, 
500 mg/kg), SE (soymilk extract, 500 mg/kg) were co-ad-
ministered orally with starch (2 g/kg). 

Each value is expressed as mean±SD of seven mice (n=42). 
a,bValues with different alphabets are significantly different at 

p＜0.05 as analyzed by Duncan's multiple range test.

SE on starch loading. Postprandial blood glucose peaked 
at 60 min after consumption of starch in the control 
group. FSE significantly suppressed incremental blood 
glucose at 30 and 60 min. These results indicate that 
FSE may delay absorption of dietary carbohydrates in 
the meal, leading to suppression of an increase in post-
prandial blood glucose level. It was summarized that 
FSE exhibited the inhibitory activities against α-glucosi-
dase and α-amylase and it further suppressed the post-
prandial glucose level after starch loading in both normal 
and diabetic mice. Inoue et al. (42) reported that an α
-glucosidase inhibitor that flattens the peak postprandial 
blood glucose level reduces the AUC of the blood glu-
cose response curve. In our study, FSE decreased both 
incremental blood glucose in terms of the peak time as 
well as AUC. 

Glycated hemoglobin is highly associated with a high-
er risk of cardiovascular disease and coronary heart dis-
ease mortality. Postprandial hyperglycemia has been 
known to be highly correlated with glycated hemoglobin 
levels and is the better predictor of glycated hemoglobin 
levels than fasting glucose (43). Also, postprandial hy-
perglycemia is strongly correlated with risk for micro- 
and macrovascular complications of diabetes (44). 
Bastyr et al. (45) demonstrated that diabetes therapy fo-
cused on lowering postprandial glucose rather than fast-
ing glucose could be a better treatment. 

In conclusion, this study demonstrated that FSE may 
be useful food source to treat type II diabetes via inhibit-
ing α-glucosidase and α-amylase and the alleviation of 
postprandial hyperglycemia on top of the known benefits 
of SE. Thus, chronic consumption of FSE could be help-
ful in improving hyperglycemia and preventing diabetic 
complication. Next investigations should include the 
search of different pathways of FSE on diabetic control 
as well as determination of the component responsible 
for the inhibition of α-glucosidase produced by 
fermentation. 
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