Browse > Article
http://dx.doi.org/10.3746/jfn.2009.14.1.008

Hypoglycemic Effect of Fermented Soymilk Extract in STZ-induced Diabetic Mice  

Yi, Na-Ri (Department of Food Science and Nutrition, Pusan National University)
Hwang, Ji-Young (Department of Food Science and Nutrition, Pusan National University)
Han, Ji-Sook (Department of Food Science and Nutrition, Pusan National University)
Publication Information
Preventive Nutrition and Food Science / v.14, no.1, 2009 , pp. 8-13 More about this Journal
Abstract
This study investigated the hypoglycemic effect of fermented soymilk extract (FSE) in STZ-induced diabetic mice. FSE was prepared via fermentation of soymilk with Bacillus subtilis followed by methanol extraction. The hypoglycemic effect was determined by inhibitory activities against ${\alpha}$-glucosidase and ${\alpha}$-amylase as well as the alleviation of postprandial glucose level. The non-fermented soymilk extract (SE) was used as control in this experiment. FSE showed higher (p<0.05) inhibitory activities than SE against ${\alpha}$-glucosidase and ${\alpha}$-amylase. The $IC_{50}$ values of FSE for ${\alpha}$-glucosidase and ${\alpha}$-amylase were 0.77 ancd 0.94 mg/mL, respectively, which were comparable or even superior to those of acarbose (0.79 and 0.68 mg/mL, respectively). In addition, a further suppression on the postprandial blood glucose levels were observed in the FSE than SE group for both STZ-induced diabetic mice and normal mice. Furthermore, FSE significantly lowered the incremental area under the curve (AUC) in the diabetic mice and the AUC in normal mice corroborated the hypoglycemic effect of FSE (p<0.05). Results from this study suggest that FSE may help decrease the postprandial blood glucose level via inhibiting ${\alpha}$-glucosidase and ${\alpha}$-amylase and the usefulness of FSE was proven to be better than SE.
Keywords
fermented soymilk extract (FSE); ${\alpha}$-glucosidase; ${\alpha}$-amylase; postprandial hyperglycemia; STZ-induced diabetes;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Inoue I, Takahashi K, Noji S, Awata T, Negishi K, Katayama S. 1997. Acarbose controls postprandial hyperproinsulinemia in non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 36: 143-151   DOI   ScienceOn
2 Bastyr EJ, Stuart CA, Brodows RG, Schwartz S, Graf CJ, Zagar A, Robertson KE (IOEZ Study Group). 2000. Therapy focused on lowering postprandial glucose, not fasting glucose, may be superior for lowering HbA1c. Diabetes Care 23: 1236-1241   DOI   ScienceOn
3 Toeller M. 1994. $\alpha$-Glucosidase inhibitors in diabetes: efficacy in NIDDM subjects. Eur J Clin Invest 24: 31-35   DOI
4 Kim JS, Kwon JS, Son KH, Kim JI. 2000. Alpha-glucosidase inhibitory activities of some wild vegetable extracts. J Food Sci Nutr 5: 174-176   과학기술학회마을
5 Avignon A, Radauceanu A, Monnier L. 1997. Nonfasting plasma glucose is a better marker of diabetic control than fasting plasma glucose in type 2 diabetes. Diabetes Care 20: 1822-1826   DOI   ScienceOn
6 Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA. 2000. Association of glycemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321: 405-412   DOI   ScienceOn
7 UK Prospective Diabetes Study (UKPDS) Group. 1998. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 317: 703-713   DOI   ScienceOn
8 Abrahaamson MJ. 2004. Optimal glycemic control in type 2 diabetes mellitus: fasting and postprandial glucose in context. Arch Intern Med 164: 486-491   DOI   ScienceOn
9 Lee DS, Lee SH. 2001. Genistein, a soy isoflavone, is a potent alpha glucosidase inhibitor. FEBS Lett 501: 84-86   DOI   ScienceOn
10 Wang YC, Yu RC, Chou CC. 2006. Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidobacteria. Food Microbiol 23: 128-135   DOI   ScienceOn
11 Veciana M, Major CA, Morgan MA, Asrat T, Toohey JS, Lien JM, Evans AT. 1995. Postprandial versus preprandial blood glucose monitoring in women with gestational diabetes mellitus requiring insulin therapy. N Engl J Med 333: 1237-1241   DOI   ScienceOn
12 Watanabe J, Kawabata J, Kurihara H, Niki R. 1997. Isolation and identification of alpha-glucosidase inhibitors from Tochucha (Eucommia ulmoides). Biosic Biotechnol Biochem 61: 177-178   DOI   ScienceOn
13 Kim JS. 2004. Effect of Rhemanniae Radix on the hyperglycemic mice induced with streptozotocin. J Korean Soc Food Sci Nutr 33: 1133-1138   과학기술학회마을   DOI   ScienceOn
14 Saito N, Sakai H, Sekihara H, Yajima Y. 1998. Effect of an $\alpha$-glucosidase inhibitor (voglibose), in combination with sulphonilureas, on glycemic control in type 2 diabetes patients. J Int Med Res 26: 219-232   DOI
15 Coniff RF, Shapiro JA, Robbins D, Kleinfield R, Scaton TB, Beisswenger P, McGill JB. 1995. Reduction of glycosylated hemoglobin and postprandial hyperglycemia by acarbose in patients with NIDDM. Diabetes Care 18: 817-824   DOI   ScienceOn
16 Lebovitz HE. 1998. Postprandial hyperglycemic state: importance and consequences. Diabetes Res Clin Pract 40: S27-S28   DOI   ScienceOn
17 Li Y, Wen S, Kota BP, Peng G, Li GQ, Yamahara J, Roufogalis BD. 2005. Punica granatum flower extract, a potent $\alpha$-glucosidase inhibitor, improves postprandial hyperglycemia in Zucker diabetic fatty rats. J Ethnopharmacol 99: 239-244   DOI   ScienceOn
18 Savitry A, Prakash M. 2004. Sing a song of soy. Prepared Food 4: 25-28
19 Ratner RE. 2001. Controlling postprandial hyperglycemia. Am J Cardiol 88: 26H-31H   DOI   ScienceOn
20 Baron AD. 1998. Postprandial hyperglycemia and $\alpha$-glucosidase inhibitors. Diabetes Res Clin Pract 40: S51-S55   DOI   ScienceOn
21 Soonthompun S, Rattarasarn C, Leelawattana R, Setasuban W. 1999. Postprandial plasma glucose: a good index of glycemic control in type 2 diabetic patients having nearnormal fasting glucose levels. Diabetes Res Clin Pract 46: 23-27   DOI   ScienceOn
22 Campbell RK, White JR, Nomura D. 2001. The clinical importance of postprandial hyperglycemia. Diabetes Educ 27: 624-637   DOI
23 Lebovitz HE. 2001. Effect of the postprandial state on nontraditional risk factors. Am J Cardiol 88: 20H-25H   DOI   ScienceOn
24 Corry DB, Tuck ML. 2000. Protection from vascular risk in diabetic hypertension. Curr Hypertens Rep 2: 154-159   DOI   ScienceOn
25 Holman RR, Cull CA, Turner RC. 1999. A randomized double-blind trial of acarbose in type 2 diabetes shows improved glycemic control over 3 years (UK Prospective Diabetes Study 44). Diabetes Care 22: 960-964   DOI   ScienceOn
26 Clissold SP, Edwards C. 1988. A preliminary review of its pharmacodynamic and pharmacokinetics properties, and therapeutic potential. Drugs 35: 214-243   DOI   ScienceOn
27 Jermendy G. 2005. Can type 2 diabetes mellitus be considered preventable? Diabetes Res Clin Prac 68: S73-S81   DOI   ScienceOn
28 Asano N, Yamashita T, Yasuda K, Ikeda K, Kizu H, Kameda Y. 2001. Polyhydroxylated alkaloids isolated from mulberry trees (Morusalba L.) and silkworms (Bombyx mori L.). J Agric Food Chem 49: 4208-4213   DOI   ScienceOn
29 Hiroyuki F, Tomohide Y, Kazunori O. 2001. Efficacy and safety of Touchi extract, an alpha-glucosidase inhibitor derived from fermented soybeans, in non-insulin-dependent diabetic mellitus. J Nutr Biochem 12: 351-356   DOI   ScienceOn
30 Hansawasdic C, Kawabata J, Kasai T. 2000. $\alpha$-Amylase inhibitors from roselle (Hibiscus sabdariffa Linn.) tea. Biosci Biotechnol Biochem 64: 1041-1043   DOI   ScienceOn
31 Hanefeld M. 1998. The role of acarbose in the treatment of non-insulin-dependent diabetes mellitus. J Diabetes Complicat 12: 228-237   DOI   ScienceOn
32 Anderson JW, Johnstone BM, Cook N. 1995. Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med 333: 276-282   DOI   ScienceOn
33 Potter SM. 1998. Soy protein and cardiovascular disease: the impact of bioactive components in soy. Nutr Rev 56: 231-235
34 Anderson JB, Anthony M, Messina M, Garner SC. 1999. Effects of phyto-estrogens on tissues. Nutr Res Rev 12: 75-116   DOI
35 Bingham SA, Atkinson C, Liggins J, Bluck L, Coward A. 1998. Phyto-estrogens: where are we now? Br J Nutr 79: 393-406   DOI   ScienceOn
36 Setchell KDR, Cassidy A. 1999. Dietary isoflavones: biological effects and relevance to human health. J Nutr 129: 758S-767S   DOI
37 Kuo LC, Cheng WY, Wu RY, Huang CJ, Lee KT. 2006. Hydrolysis of black soybean isoflavone glycosides by Bacillus subtilis natto. Appl Microbiol Biotechnol 73: 314-320   DOI   ScienceOn
38 Lebovitz HE. 1997. Alpha-glucosidase inhibitors. Endocrin Metab Clin 26: 539-551   DOI
39 Hara Y, Honda M. 1990. The inhibition of $\alpha$-amylase by tea polyphenols. Agric Biol Chem 54: 1939-1945   DOI
40 The Diabetes Control and Complications Trial (DCCT) Research Group. 1993. The effect of intensive treatment of diabetes on the development and progression of long-term complications in the diabetes control in insulin-dependent diabetes mellitus. N Engl J Med 329: 977-986   DOI   ScienceOn
41 Balflour JA, McTavish D. 1993. Acarbose. An update of its pharmacology and therapeutic use in diabetes mellitus. Drugs 46: 1025-1054   DOI   ScienceOn
42 Standl E, Baumgartl HJ, Fuchtenbusch M, Stemplinger J. 1999. Effect of acarbose on additional insulin therapy in type 2 diabetic patients with late failure of sulphonylurea therapy. Diabetes Obes Metab 1: 215-220   DOI   ScienceOn
43 Matsui T, Ueda T, Oki T, Sugita K, Terahara N, Matsumoto K. 2001. Alpha-glucosidase inhibitory action of natural acylated anthocyanins. 1. Survey of natural pigments with potent inhibitory activity. J Agric Food Chem 49: 1948-1951   DOI   ScienceOn
44 Hermansen K, Sondergaard M, Hoie L, Carstensen M, Brock B. 2001. Beneficial effects of a soy-based dietary supplement on lipid levels and cardiovascular risk markers in type 2 diabetic subjects. Diabetes Care 24: 228-233   DOI   ScienceOn
45 Rebeca FO, Juana F, Rosario M, Henryk Z, Mariusz KP, Halina K, Concepcion V. 2007. Fermentation as a bio process to obtain functional soybean flours. J Agric Food Chem 55: 8872-8979   DOI   ScienceOn