• Title/Summary/Keyword: $^1H$ qNMR

Search Result 30, Processing Time 0.029 seconds

Optimization of 1D 1H Quantitative NMR (Nuclear Magnetic Resonance) Conditions for Polar Metabolites in Meat

  • Kim, Hyun Cheol;Ko, Yoon-Joo;Kim, Minsu;Choe, Juhui;Yong, Hae In;Jo, Cheorun
    • Food Science of Animal Resources
    • /
    • v.39 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • The objective of this study was to establish an optimized 1D $^1H$ quantitative nuclear magnetic resonance (qNMR) analytical method for analyzing polar metabolites in meat. Three extraction solutions [0.6 M perchloric acid, 10 mM phosphate buffer, water/methanol (1:1)], three reconstitution buffers [20 mM 3-morpholinopropane-1-sulfonic acid, 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid, phosphate buffer], and two pulse programs (zg30, noesypr1d) were evaluated. Extraction with 0.6 M perchloric acid and 20 mM phosphate resulted in a stable baseline and no additional overlap for quantifying polar metabolites in chicken breast. In qNMR analysis, zg30 pulse program (without water-suppression) showed smaller relative standard deviation (RSD) and faster running time than noesypr1d (water-suppression). High-performance liquid chromatography was compared with qNMR analyses to validate accuracy. The zg30 pulse program showed good accuracy and lower RSD. The optimized qNMR method was able to apply for beef and pork samples. Thus, an optimized 1D $^1H$ qNMR method for meat metabolomics was established.

Effect of Particle Size on the Atomic Structure of Amorphous Silica Nanoparticles: Solid-state NMR and Quantum Chemical Calculations (비정질 규산염 나노입자의 입자 크기에 따른 원자 구조 변화 : 고상 핵자기공명 분석 및 양자화학계산 연구)

  • Kim, Hyun-Na;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.321-329
    • /
    • 2008
  • Amorphous silica nanoparticles are among the most fundamental $SiO_2$ compounds, having implications in diverse geological processes and technological applications. Here, we explore structural details of amorphous silica nanoparticles with varying particle sizes (7 and 14 nm) using $^{29}Si$ and $^{1}H$ MAS NMR spectroscopy together with quantum chemical calculations to have better prospect for their size-dependent atomic structures. $^{29}Si$ MAS NMR spectra at 9.4 T resolve $Q^2,\;Q^3$ and $Q^4$ species at -93 ppm, -101 ppm, -110 ppm, respectively. The fractions of $Q^2,\;Q^3,\;O^4$ species are $7{\pm}1%,\;27{\pm}2%$, and $66{\pm}2%$ for 7 nm amorphous silica nanoparticles and $6{\pm}1%,\;21{\pm}2%$, and $73{\pm}2%$ for 14 nm amorphous silica nanoparticles. Whereas it has been suggested that $Q^2$ and $Q^3$ species exist on particles surfaces, the difference in $Q^{2}\;+\;Q^{3}$ fraction in both 7 and 14 nm particles is not significant, suggesting that $Q^2$ and $Q^3$ species could exist inside particles. $^{1}H$ MAS NMR spectra at 11.7 T shows diverse hydrogen environments, including physisorbed water, hydrogen bonded silanol, and non-hydrogen bonded silanol with varying hydrogen bond strength. The hydrogen contents in the 7nm silica nanoparticles (including water and hydroxyl groups) are about 3 times of that of 14 nm particles. The larger chemical shills for proton environments in the former suggest stronger hydrogen bond strength. The fractions of non-hydrogen bonded silanols in the 14 nm amorphous silica nanoparticles are larger than those in 7 nm amorphous silica nanoparticles. This observation suggests closer proximity among hydrogen atoms in the nanoparticles with smaller diameter. The current results with high-resolution solid-state NMR reveal previously unknown structural details in amorphous silica nanoparticles with particle size.

Multinuclear Solid-state NMR Investigation of Nanoporous Silica Prepared by Sol-gel Polymerization Using Sodium Silicate

  • Kim, Sun-Ha;Han, Oc-Hee;Kim, Jong-Kil;Lee, Kwang-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3644-3649
    • /
    • 2011
  • Multinuclear solid-state nuclear magnetic resonance (NMR) experiments were performed to investigate the local structure changes of nanoporous silica during hydrothermal treatment and surface modification with 3-aminopropyltriethoxysilane (3-APTES). The nanoporous silica was prepared by sol-gel polymerization using inexpensive sodium silicate as a silica precursor. Using $^1H$ magic angle spinning (MAS) NMR spectra, the hydroxyl groups, which play an important role in surface reactions, were probed. Various silicon sites such as $Q^2$, $Q^3$, $Q^4$, $T^2$, and $T^3$ were identified with $^{29}Si$ cross polarization (CP) MAS NMR spectra and quantified with $^{29}Si$ MAS NMR spectra. The results indicated that about 25% of the silica surface was modified. $^1H$ and $^{29}Si$ NMR data proved that the hydrothermal treatment induced dehydration and dehyroxylation. The $^{13}C$ CP MAS and $^1H$ MAS NMR spectra of 3-APTES attached on the surface of nanoporous silica revealed that the amines of the 3-aminopropyl groups were in the chemical state of ${NH_3}^+$ rather than $NH_2$.

A new approach to quantify paraquat intoxication from postmortem blood sample by using 1H qNMR method

  • Hong, Ran Seon;Cho, Hwang Eui;Kim, Dong Woo;Woo, Sang Hee;Choe, Sanggil;Kim, Suncheun;Hong, Jin Tae;Moon, Dong Cheul
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • For a case study of suspected paraquat intoxication, we developed a simple and rapid method of $^1H$ qNMR to determine the mili-molar amount of paraquat in postmortem blood samples. There were no interfering signals from endogenous compounds in the chemical shift of paraquat and diquat (internal standard). The amount of sample used ranged from 0.25 mM to 10.0 mM. Diquat, which has similar physicochemical properties with paraquat, was chosen as an internal standard. The NMR experimental conditions, relaxation delay time and CPMG spin-echo pulse sequence were optimized. The developed method was validated in terms of specificity, accuracy, precision, matrix effect, recovery, limit of detection (LOD), and low limit of quantification (LLOQ). The proposed qNMR method provided a simple and rapid assay for the identification and quantification of the quaternary ammonium herbicide, "paraquat" in postmortem blood samples. This method was tested by using the blood from the heart of a man who was intoxicated with paraquat. In this particular case, the level of paraquat was 1.07 mM in the blood. For the determination of quaternary ammonium herbicides, qNMR could also be used to provide a better understanding of the currently available techniques.

Quantification of Allantoin in Yams (Dioscorea sp.) Using a 1H NMR Spectroscopic Method

  • Thao Quyen Cao;Dongyup Hahn
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.5
    • /
    • pp.662-667
    • /
    • 2023
  • Allantoin is an abundant component of yams and has been known as a skin protectant due to its pharmacological activities. In previous methods for allantoin determination using high-performance liquid chromatography (HPLC), the separation was unsatisfactory. We herein developed a 1H quantitative nuclear magnetic resonance (qNMR) method for quantification of allantoin in the flesh and peel of yams. The method was carried out based on the relative ratio of signals integration of allantoin to a certain amount of the internal standard dimethyl sulfone (DMSO2) and validated in terms of specificity, linearity (range 62.5-2000 ㎍/ml), sensitivity (limit of detection (LOD) and quantification (LOQ) 4.63 and 14.03 ㎍/ml, respectively), precision (RSD% 0.02-0.26), and recovery (86.35-92.11%). The method was then applied for the evaluation of allantoin in flesh and peel extracts of four different yams cultivated in Korea.

Nuclear Magnetic Resonance (NMR)-Based Quantification on Flavor-Active and Bioactive Compounds and Application for Distinguishment of Chicken Breeds

  • Kim, Hyun Cheol;Yim, Dong-Gyun;Kim, Ji Won;Lee, Dongheon;Jo, Cheorun
    • Food Science of Animal Resources
    • /
    • v.41 no.2
    • /
    • pp.312-323
    • /
    • 2021
  • The purpose of this study was to use 1H nuclear magnetic resonance (1H NMR) to quantify taste-active and bioactive compounds in chicken breasts and thighs from Korean native chicken (KNC) [newly developed KNCs (KNC-A, -C, and -D) and commercial KNC-H] and white-semi broiler (WSB) used in Samgye. Further, each breed was differentiated using multivariate analyses, including a machine learning algorithm designed to use metabolic information from each type of chicken obtained using 1H-13C heteronuclear single quantum coherence (2D NMR). Breast meat from KNC-D chickens were superior to those of conventional KNC-H and WSB chickens in terms of both taste-active and bioactive compounds. In the multivariate analysis, meat portions (breast and thigh) and chicken breeds (KNCs and WSB) could be clearly distinguished based on the outcomes of the principal component analysis and partial least square-discriminant analysis (R2=0.945; Q2=0.901). Based on this, we determined the receiver operating characteristic (ROC) curve for each of these components. AUC analysis identified 10 features which could be consistently applied to distinguish between all KNCs and WSB chickens in both breast (0.988) and thigh (1.000) meat without error. Here, both 1H NMR and 2D NMR could successfully quantify various target metabolites which could be used to distinguish between different chicken breeds based on their metabolic profile.

$^{11}B $Nutation NMR Study of Powdered Borosilicates

  • 우애자;한덕영;양경화
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.5
    • /
    • pp.519-524
    • /
    • 1998
  • In this work, we applied the 1D 11B nutation NMR method for the analysis of the local structural environments in powdered borosilicates (SiO2-B2O3). Spin dynamics during a rf irradiation for spin I=3/2 was analytically calculated with a density matrix formalism. Spectral simulation programs were written in MATLAB on a PC. Two borosilicates prepared by the sol-gel process at different stabilization temperature were used for the 1D 11B nutation NMR experiment. The 11B NMR parameters, quadrupole coupling constants (e2qQ/h) and asymmetry parameters (η), for each borosilicate were extracted from the nonlinear least-squares fitting. The effects of heat treatments on the local structures of boron sites in borosilicates were discussed.

Deuterium NMR Studies of $({\mu}_3-C^2H)[Co(CO)_3]_3$

  • Woo, Ae-Ja;Maria I. Altbach;Leslie G. Butler
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.1 no.2
    • /
    • pp.95-102
    • /
    • 1997
  • Deuterium quadrupole coupling constant (e2qzzQ/h) of ($\mu$3-C2H)[Co(CO)3]3 was determined by using solid-state deuterium MAS NMR spectroscopy. The small quadrupole coupling constant of bridging methyne unit relative to sp-acethylene in propyne is discussed in terms of the C-H bond length and the negative charge on the carbon.

  • PDF

Phenolic Compounds from Acer tegmentosum Bark (산겨릅나무 수피의 페놀성 화합물)

  • Kwon, Dong-Joo;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.145-151
    • /
    • 2007
  • To investigate the chemical constituents of Acer tegmentosum, the bark were collected, air-dried and extracted with 70% aqueous acetone. Then it was successively partitioned with n-hexane, $CH_2Cl_2$, EtOAc and $H_2O$. Repeated Sephadex LH-20 column chromatography on the EtOAc soluble fraction gave five phenolic compounds. Their structures were elucidated as (+)-catechin (1), (-)-epi-catechin (2), Q-epicatechin-3-O-gallate (3), gallic acid (4) and 6'-0-galloylsalidroside (5) on the basis of spectroscopic evidences using $^1H-NMR$, $^{13}C-NMR$, 2D-NMR and MS spectroscopy, (-)-epicatechin-3-Ogallate (3), gallic acid (4), 6'-Ogalloylsalidroside (5) have not been reported in this plant yet.

The Effects of Media on the Intramolecular Photocycloaddition of 3-(3-Butenyl)cyclohex-2-enone

  • 노태희;최균선;박종욱
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.5
    • /
    • pp.501-503
    • /
    • 1998
  • In this work, we applied the 1D $11^B$ nutation NMR method for the analysis of the local structural environments in powdered borosilicates $(SiO_2-B_2O_3)$. Spin dynamics during a rf irradiation for spin I=3/2 was analytically calculated with a density ma trix formalism. Spectral simulation programs were written in MATLAB on a PC. Two borosilicates prepared by the sol-gel process at different stabilization temperature were used for the 1D $11^B$ nutation NMR experiment. The $11^B$ NMR parameters, quadrupole coupling constants $(e^2qQ/h)$ and asymmetry parameters (η), for each borosilicate were extracted from the nonlinear least-squares fitting. The effects of heat treatments on the local structures of boron sites in borosilicates were discussed.