DOI QR코드

DOI QR Code

A new approach to quantify paraquat intoxication from postmortem blood sample by using 1H qNMR method

  • Received : 2013.05.28
  • Accepted : 2013.06.12
  • Published : 2013.06.20

Abstract

For a case study of suspected paraquat intoxication, we developed a simple and rapid method of $^1H$ qNMR to determine the mili-molar amount of paraquat in postmortem blood samples. There were no interfering signals from endogenous compounds in the chemical shift of paraquat and diquat (internal standard). The amount of sample used ranged from 0.25 mM to 10.0 mM. Diquat, which has similar physicochemical properties with paraquat, was chosen as an internal standard. The NMR experimental conditions, relaxation delay time and CPMG spin-echo pulse sequence were optimized. The developed method was validated in terms of specificity, accuracy, precision, matrix effect, recovery, limit of detection (LOD), and low limit of quantification (LLOQ). The proposed qNMR method provided a simple and rapid assay for the identification and quantification of the quaternary ammonium herbicide, "paraquat" in postmortem blood samples. This method was tested by using the blood from the heart of a man who was intoxicated with paraquat. In this particular case, the level of paraquat was 1.07 mM in the blood. For the determination of quaternary ammonium herbicides, qNMR could also be used to provide a better understanding of the currently available techniques.

Keywords

References

  1. A. van Dijk, R.A.A.M.a.R.H.D.J.M.D.a.A.N.P.v.H., Archives of Toxicology 34, 129 (1975). https://doi.org/10.1007/BF00353313
  2. Erickson, T., et al., J Emerg Med, 15, 649 (1997). https://doi.org/10.1016/S0736-4679(97)00144-3
  3. Houze, P., et al., Hum Exp Toxicol, 9, 5 (1990). https://doi.org/10.1177/096032719000900103
  4. Lee, S.K., et al., Int J Legal Med, 112, 198 (1999). https://doi.org/10.1007/s004140050233
  5. Moreira, P.N., et al., Biomed Chromatogr, 26, 338 (2012). https://doi.org/10.1002/bmc.1663
  6. Taguchi, V.Y., et al., J Am Soc Mass Spectrom, 9, 830 (1998). https://doi.org/10.1016/S1044-0305(98)00043-9
  7. Ludwig-Kohn, H., et al., Clin Chim Acta, 121, 189 (1982). https://doi.org/10.1016/0009-8981(82)90058-4
  8. de Almeida, R.M. and M., J Chromatogr B Analyt Technol Biomed Life Sci, 853, 260 (2007). https://doi.org/10.1016/j.jchromb.2007.03.026
  9. Lee, X.P., et al., J Mass Spectrom, 39, 1147 (2004). https://doi.org/10.1002/jms.695
  10. Bo, H., Se Pu, 29, 180 (2011).
  11. Whitehead, R.D., Jr., et al., J Chromatogr B Analyt Technol Biomed Life Sci, 878, 2548 (2010). https://doi.org/10.1016/j.jchromb.2009.09.029
  12. Castro, R., E. Moyano, and M.T. Galceran, J Chromatogr A, 914, 111 (2001). https://doi.org/10.1016/S0021-9673(01)00523-4
  13. J. Jung, G. S. Hwang, J. Kor. Magn. Reson. Soc. 15, 54 (2011). https://doi.org/10.6564/JKMRS.2011.15.1.054
  14. H. Kim, E. Hong and W.Lee, J. Kor. Magn. Reson. Soc. 15, 115 (2011). https://doi.org/10.6564/JKMRS.2011.15.2.115
  15. Martinez-Bisbal, M.C., et al., NMR Biomed, 22(2), 199 (2009). https://doi.org/10.1002/nbm.1304
  16. Malet-Martino, M. and U. Holzgrabe, Journal of Pharmaceutical and Biomedical Analysis, 55(1), 1 (2011). https://doi.org/10.1016/j.jpba.2010.12.023
  17. Holzgrabe, U., Prog Nucl Magn Reson Spectrosc, 57(2), 229 (2010). https://doi.org/10.1016/j.pnmrs.2010.05.001
  18. Li, K., et al., Anal Bioanal Chem, 405, 2619 (2013). https://doi.org/10.1007/s00216-012-6652-9
  19. Ding, P.L., et al., J Pharm Biomed Anal, 60, 44 (2012).
  20. Molinier, V., et al., Carbohydr Res, 341(11), 1890 (2006). https://doi.org/10.1016/j.carres.2006.04.034
  21. Imbenotte, M., et al., Forensic Science International, 133(1-2), 132 (2003). https://doi.org/10.1016/S0379-0738(03)00059-8
  22. Lourenco, A.B., et al., PLoS One, 8(2), e55439 (2013). https://doi.org/10.1371/journal.pone.0055439
  23. Akoka,S., et al., Anal Chem, 71(13), 2554-7 (1999). https://doi.org/10.1021/ac981422i

Cited by

  1. Survey of ERETIC2 NMR for quantification vol.17, pp.2, 2013, https://doi.org/10.6564/JKMRS.2013.17.2.098