DOI QR코드

DOI QR Code

Multinuclear Solid-state NMR Investigation of Nanoporous Silica Prepared by Sol-gel Polymerization Using Sodium Silicate

  • Received : 2011.06.20
  • Accepted : 2011.08.11
  • Published : 2011.10.20

Abstract

Multinuclear solid-state nuclear magnetic resonance (NMR) experiments were performed to investigate the local structure changes of nanoporous silica during hydrothermal treatment and surface modification with 3-aminopropyltriethoxysilane (3-APTES). The nanoporous silica was prepared by sol-gel polymerization using inexpensive sodium silicate as a silica precursor. Using $^1H$ magic angle spinning (MAS) NMR spectra, the hydroxyl groups, which play an important role in surface reactions, were probed. Various silicon sites such as $Q^2$, $Q^3$, $Q^4$, $T^2$, and $T^3$ were identified with $^{29}Si$ cross polarization (CP) MAS NMR spectra and quantified with $^{29}Si$ MAS NMR spectra. The results indicated that about 25% of the silica surface was modified. $^1H$ and $^{29}Si$ NMR data proved that the hydrothermal treatment induced dehydration and dehyroxylation. The $^{13}C$ CP MAS and $^1H$ MAS NMR spectra of 3-APTES attached on the surface of nanoporous silica revealed that the amines of the 3-aminopropyl groups were in the chemical state of ${NH_3}^+$ rather than $NH_2$.

Keywords

References

  1. Pajonk, G. M. Appl.Catal. 1991, 72, 217. https://doi.org/10.1016/0166-9834(91)85054-Y
  2. Dias, A. S.; Pillinger, M.; Valente, A. A. Micropor. Mesopor.Mater. 2006, 94, 214. https://doi.org/10.1016/j.micromeso.2006.03.035
  3. Jamali, M. R.; Aassadi, Y.; Shemirani, F.; Hosseini, M. R. M.; Kozani, R. R.; Masteri-Farahani, M.; Salavati-Niasani, M. Anal. Chim. Acta. 2006, 579, 68. https://doi.org/10.1016/j.aca.2006.07.006
  4. Tang, Q.; Xu, Y.; Wu, D.; Sun, Y. J. Solid State Chem. 2006, 179, 1513. https://doi.org/10.1016/j.jssc.2006.02.004
  5. Ren, Y.; Yue, B.; Gu, M.; He, H. Mater. 2010, 3, 764. https://doi.org/10.3390/ma3020764
  6. Patel, R. P.; Purohit, N. S.; Suthar, A. M. Int. J. ChemTech. Res. 2009, 1, 1052.
  7. Hila, E.; David, A. Chem. Mater. 2008, 20, 2224. https://doi.org/10.1021/cm703215r
  8. Iler, R. K. The Chemistry of Silica; Wiley: New York, 1979.
  9. Hartmeyer, G.; Marichal, C.; Lebeau, B.; Rigolet, S.; Caullet, P.; Hernandez, J. J. Phys. Chem. C 2007, 111, 9066. https://doi.org/10.1021/jp071490l
  10. Brindle, R.; Pursch, M.; Albert, K. Solid State Nucl. Magn. Reson 1996, 6, 251. https://doi.org/10.1016/0926-2040(96)01227-1
  11. Chuang, I.-S.; Kinney, D. R.; Maciel, G. E. J. Am. Chem. Soc. 1993, 115, 8695. https://doi.org/10.1021/ja00072a024
  12. Zhuravlev, L. T. Colloids Surf. A 2000, 173, 1. https://doi.org/10.1016/S0927-7757(00)00556-2
  13. Dijkstra, T. W.; Duchateau, R.; van Santen, R. A.; Meetsma, A.;Yap, G. P. A. J. Am. Chem. Soc. 2002, 124, 9856. https://doi.org/10.1021/ja0122243
  14. Jal, P. K.; Patel, S.; Mishra, B. K. Talanta 2004, 62, 1005. https://doi.org/10.1016/j.talanta.2003.10.028
  15. Grünberg, B.; Emmler, T.; Gedat, E.; Shenderovich, I.; Findenegg, G. H.; Limbach, H.-H.; Buntkowsky, G. Chem. Eur. J. 2004, 10, 5689. https://doi.org/10.1002/chem.200400351
  16. Yuan, P.; Wu, D.; Chen, Z.; Chen, Z.; Lin, Z.; Diao, G.; Peng, J. Chin. Sci. Bull. 2001, 46, 1128.
  17. van der Meer, J.; Bardez-Giboire, I.; Mercier, C.; Revel, B.; Davidson, A.; Denoyel, R. J. Phys. Chem. C 2010, 114, 3507. https://doi.org/10.1021/jp907002y
  18. Doremieux-Morin, C.; Heeribout, L.; Dumousseaux, C.; Fraissard, J.; Hommel, H.; Legrand, A. P. J. Am. Chem. Soc. 1996, 118, 13040. https://doi.org/10.1021/ja962057k
  19. Stanislaus, A.; Al-Dolama, K.; Absi-Halabi, M. J. Molec. Catal. A 2002, 181, 33. https://doi.org/10.1016/S1381-1169(01)00353-3
  20. Yasmin, T.; Muller, K. J. Chromatogr. A 2010, 1217, 3362. https://doi.org/10.1016/j.chroma.2010.03.005
  21. Albert, K. J. Sep. Sci. 2003, 26, 215. https://doi.org/10.1002/jssc.200390028
  22. Lynch, B.; Glennon, J. D.; Troltzsch, C.; Menyes, U.; Pursch, M.; Albert, K. Anal. Chem. 1997, 69, 1756. https://doi.org/10.1021/ac960717y

Cited by

  1. Enhancing the open circuit voltage of dye sensitized solar cells by surface engineering of silica particles in a gel electrolyte vol.1, pp.35, 2011, https://doi.org/10.1039/c3ta11436h
  2. Facile Modification of Surface of Silica Particles with Organosilanepolyol and Their Characterization vol.34, pp.12, 2011, https://doi.org/10.5012/bkcs.2013.34.12.3805
  3. Water-Dispersible Silica-Coated Upconverting Liposomes: Can a Thin Silica Layer Protect TTA-UC against Oxygen Quenching? vol.3, pp.3, 2011, https://doi.org/10.1021/acsbiomaterials.6b00678
  4. Fluorine free superhydrophobic surface textured silica particles and its dynamics–Transition from impalement to impingement vol.711, pp.None, 2017, https://doi.org/10.1016/j.jallcom.2017.03.338
  5. Synthesis and characterization of L-Arginine modified silica by sol-gel method prepared rice hull ash vol.509, pp.None, 2019, https://doi.org/10.1088/1757-899x/509/1/012135
  6. Utilization of iron tailings to prepare high-surface area mesoporous silica materials vol.736, pp.None, 2011, https://doi.org/10.1016/j.scitotenv.2020.139483
  7. Design of a Zn Single-Site Curing Activator for a More Sustainable Sulfur Cross-Link Formation in Rubber vol.60, pp.28, 2011, https://doi.org/10.1021/acs.iecr.1c01580