• Title/Summary/Keyword: $^1H$ NMR titration

Search Result 37, Processing Time 0.029 seconds

Synthesis and Fluorescence Properties of New Rhodamine 6G Derivarives Containing Hydroxy Coumarin Moiety (새로운 로다민 6G 하이드록시 쿠마린 유도체의 합성과 형광특성)

  • Park, Seong Ho;Chang, Seung Hyun
    • Journal of Environmental Science International
    • /
    • v.25 no.9
    • /
    • pp.1283-1288
    • /
    • 2016
  • In this study, we synthesized fluorescent sensors from rhodamine 6G derivatives and hydroxy coumarin. The synthetic routes to the rhodamine 6G derivatives containing hydroxy coumarin are shown in Fig. 1. Two derivatives were synthesized through Schiff base reactions. The structures of the new compounds were confirmed by melting point, $^1H$-NMR, and GC-MS analyses. The compounds were found to selectively bind to tin ($Sn^{2+}$) ion by fluorescence titration using various metal cations. Longer carbon chains gave more sensitivity. $Sn^{2+}$ ions exhibited the strongest fluorescence among the nime ions. The binding analysis using Job plots suggested that compounds form 1:1 complexes with the $Sn^{2+}$ ions.

Biodegradation of Kraft Lignins by White-Rot Fungi(I) -Lignin from Pitch Pine- (백색부후균에 의한 크라프트 리그닌의 분해(I) -리기다소나무 리그닌-)

  • 김명길;안원영
    • Journal of Korea Foresty Energy
    • /
    • v.17 no.1
    • /
    • pp.56-70
    • /
    • 1998
  • This study was carried out to investigate the structural characteristics of kraft lignin and the wood degrading characteristics, the productivity of ligninolytic enzymes and the enzymatic degradation of kraft lignin by white-rot fungi. To purify kraft lignin, precipitation of kraft pulping black liquors of pitch pine meal was done by titration with lN $H_{2}SO_{4}$ reaching to pH 2, and isolation of the precipitates done by centrifugation. The isolated precipitates from pitch pine were redissloved in lN NaOH, reprecipitated by titration with lN $H_{2}SO_{4}$, washed with deionized water, and kept ofr analysis after freeze drying. Fractionation of the precipitates in solution by successive extraction with $CH_{2}Cl_{2}$ and MeOH, and the fractionates were named SwKL, SwKL I, SwKL II, and SwKL III for pitch pine kraft lignin. The more molecular weights of kraft lignin increased, the less phenolic hydroxyl groups and the more aliphatic hydroxyl groups. Because as the molecular weights increased, the ratio of etherified guaiayl/syringyl(G/S ratio) and the percentage were increased. The spectra obtained by 13C NMR and FTIR assigned by comparing the chemical shifts of various signals with shifts of signals from autherized ones reported. The optimal growth temperature and pH of white-rot fungi in medium were $28^{\circ}C$ and 4.5-5.0, respectively. Especially, in temperature and pH range, and mycelial growth, the best white-rot fungus selected was Phanerochaete chrysosporium for biodegradation. For the degradation pathways, the ligninolytic fungus jcultivated with stationary culture using medium of 1% kraft lignin as a substrate for 3 weeks at $28^{\circ}C$. The weight loss of pitch pine kraft lignin was 15.8%. The degraded products extracted successively methoanol, 90% dioxane and diethyl ether. The ether solubles were analyzed by HPLC. Kraft lignin degradation was initiated in $\beta$-O-4 bonds of lignin by the laccase from Phanerochaete chrysosporium and the degraded compounds were produced from the cleavage of $C\alpha$-$C\beta$ linkages at the side chains by oxidation process. After $C\alpha$-$C\beta$ cleavage, $C\alpha$-Carbon was oxidized and changed into aldehyde and acidic compounds such as syringic acid, syringic aldehyde and vanilline. And the other compound as quinonemethide, coumarin, was analyzed. The structural characteristics of kraft lignin were composed of guaiacyl group substituted functional OHs, methoxyl, and carbonyl at C-3, -4, and -5 and these groups were combinated with $\alpha$ aryl ether, $\beta$ aryl ether and biphenyl. Kraft lignin degradation pathways by Phanerochaete chrysosporium were initially accomplished cleavage of $C\alpha$-$C\beta$ linkages and $C\alpha$ oxidation at the propyl side chains and finally cleavage of aromatic ring and oxidation of OHs.

  • PDF

Mercury recovery from aqueous solutions by polymer-enhanced ultrafiltration using a sulfate derivative of chitosan

  • Carreon, Jose;Saucedo, Imelda;Navarro, Ricardo;Maldonado, Maria;Guerra, Ricardo;Guibal, Eric
    • Membrane and Water Treatment
    • /
    • v.1 no.4
    • /
    • pp.231-251
    • /
    • 2010
  • The sulfatation of chitosan, by reaction with chlorosulfonic acid under controlled conditions, allowed increasing the pH range of chitosan solubility. The biopolymer was characterized using FTIR and $^{13}C$-NMR spectroscopy, elemental analysis and titration analysis and it was tested for mercury recovery by polymer enhanced ultrafiltration (PEUF). In slightly alkaline conditions (i.e., pH 8) mercury recovery was possible and at saturation of the polymer the molar ratio $-NH_2$/Hg(II) tended to 2.6. Polymer recycling was possible changing the pH to 2 and the polymer was reused for 3 cycles maintaining high metal recovery. The presence of chloride ions influences metal speciation and affinity for the polymer and "playing" with metal speciation allowed using the PEUF process for mercury separation from cadmium; at pH 11 the formation of hydroxo-complexes of Hg(II) limits it retention. Cake formation reveals the predominant controlling step for permeation flux.

Differences in Structural Characteristics and Eu(III) Complexation for Molecular Size Fractionated Humic Acid (분자량별 분류에 따른 휴믹산의 구조적 특성 및 Eu(III)과의 착물 반응 특성 비교에 대한 연구)

  • Shin, Hyun-Sang;Rhee, Dong-Seok;Kang, Kihoon
    • Analytical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.159-166
    • /
    • 2001
  • A humic acid(HA, Aldrich Co) sample was subjected to ultrafiltration for molecular size fractionation and three fractions of different nominal size($F_1$: 1,000-10,000 daltons; $F_2$: 10,000-50,000 daltons; $F_3$: 100,000-300,000 daltons) were obtained. The structural characteristics of the size-fractionated HA were analyzed using their IR and solid state C-13 NMR spectral data, and the carboxylate group contents of the humic acids were determined using their pH titration data. The $^7F_0-{^5}D_0$ excitation spectra of Eu(III) complexes of the size-fractionated mgHA in aqueous solution were acquired($[Eu(III)]=1.0{\times}10^{-4}mol\;L^{-1}$, $(HA)=470-970mg\;L^{-1}$) at pH 5.0 using a pulsed tunable laser system, in which metal binding properties of the size-fractionated HA were elucidated and compared on another. Characterization of the IR and C-13 NMR spectral data indicated that the fraction($F_3$) with molecules of larger size were primarily aliphatic, while the fractions($F_1$, $F_2$) with smaller molecules of less than 50,000 daltons were predominantly aromatic. Titration data were consistent with an increase in the number of carboxylate groups per unit mass as molecular size became smaller. The $^7F_0-{^5}D_0$ excitation spectral data of Eu(III)-humate complexes showed that the peak maxima on these spectra were shifted toward lower energies with increasing molecular size of HA, indicating the higher degree of bindings of the Eu in the molecules of larger size. We also discussed the relationship of the lower energy shifts of the maximum peaks with increasing the molecular size of HA with the structural differences of the size-fractionated HA.

  • PDF

Phosgen-free Synthesis of Oligoureas Having Amino End-groups: Their Application to the Synthesis of Poly(urea-imide)

  • Chang, Ji-Young;Kim, Beom-Jin
    • Fibers and Polymers
    • /
    • v.3 no.2
    • /
    • pp.55-59
    • /
    • 2002
  • The thermal reaction of acetoacetanilide in the presence of aniline or phenol yielded carbanilide in quantitative yields. This reaction was applied to the synthesis of polyurea. Bisacetoacetamides were prepared from diamines and diketene in DMF. They were thermally polymerized in the presence of phenol or a diamine (6FDA) to yield polyureas of low molecular weights. The polymers were soluble in DMSO and NMP. $^1{H-NMR}$ analysis showed that they had amino group terminated structures. Poly(urea-imide) was synthesized by the reaction of an oligourea diamine with pyromellitic dianhydride in NMP. The concentration of terminal amino groups was determined by an acid-base titration. The thermal property of poly(urea-imide) was evaluated by thermogravimetric analysis (TGA). Initial decompisition took place at 332-$350^{\circ}C$.

Characterizations of Novel Poly(aspartic acid) Derivatives Conjugated with γ-Amino Butyric Acid (GABA) as the Bioactive Molecule

  • Kim, Seung-Il;Son, Chang-Mo;Jeon, Young-Sil;Kim, Ji-Heung
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.3025-3030
    • /
    • 2009
  • Novel poly(aspartic acid) derivatives conjugated with $\gamma$-amino butyric acid, GABA, moieties, and their amphiphilic analogs were synthesized and characterized. The chemical structures of these polymers were confirmed by FT-IR and $^1H$ NMR spectroscopy. Their physicochemical properties in aqueous media were characterized by electrophonetic light scattering spectrophotometry (ELS), acid-base titration, and UV-spectroscopy. In addition, the in vitro cell activity of the GABA-conjugated polymer was examined. These results indicated that GABA-conjugated poly(aspartic acid) derivatives showed cell-growth activity and nanoparticle formation of a suitable size within aqueous media. These polymers have potential application in the cosmetic and pharmaceutical fields.

Interaction Studies of a Novel, Water-Soluble and Anti-Cancer Palladim(II) Complex with Calf Thymus DNA

  • Mansouri-Torshizi, H.;Saeidifar, M.;Divsalar, A.;Saboury, A.A.;Shahraki, S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.435-441
    • /
    • 2010
  • We report the preparation and characterization of a new and water soluble complex of palladium(II) with 1,10- phenanthroline and butyldithiocarbamate ligands. This compound has been studied through spectroscopic techniques, $^1H$ NMR, IR, electronic spectra and elemental analysis and conductivity measurements. The complex shows 50% cytotoxic concentration ($Ic_{50}$) value against chronic myelogenous leukemia cell line, K562, much lower than that of cisplatin. Thus the mode of binding of this complex to calf thymus DNA have been extensively investigated by isothermal titration UV-visible spectrophotometry, fluorescence, gel filteration and other methods. UV-visible studies show that the complex exhibits cooperative binding with DNA and remarkably denatures the DNA at extremely low concentration ($~13\;{\mu}M$). Fluorescence studies indicate that the complex intercalate into DNA. Gel filtration studies suggest that the binding of Pd(II) complex with DNA is strong enough that it does not readily break. In these interaction studies, several thermodynamic and binding parameters are also determined which may reflect the mechanism of action of this type of compound with DNA.

Host-Guest Interactions of Cyclic and Acyclic Polyethers with Alkylammonium Ions (고리 및 비고리 폴리에테르와 알킬암모늄 이온과의 호스트-게스트 상호작용)

  • Jeong, Jong Hwa;Kim, Dae Yeon;Lee, Sim Seong
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.7
    • /
    • pp.509-515
    • /
    • 1994
  • The interactions of 11 kinds of primary and secondary alkylammonium ions with cyclic (12C4, 15C5, 18C6, DT18C6 and DA18C6) and acyclic$(Q_2O_5)$ polyethers were investigated by NMR titration and conductometry. All of the alkylammonium ions under investigation form the relatively stable 1 : 1 complexes with crown ethers and acyclic polyether by H-bond. The interactions of alkylammonium ions with analogeous hosts having different size were in the order of 18C6 > 15C5 > 12C4, and the strengthes of donor atoms toward the alkylammonium ions were in the order of N > O > S. 18C6 forms more favorable interactions with primary alkylammonium ions than secondary alkylammonium ions, otherwise DA18C6 shows the opposite behaviors. The stability constants for complexations of 18C6 with the alkylammonium ions were determined conductometrically in methanol at 25$^{\circ}C$. The major factors affecting the stability of complexes were the type of alkylammonium ions, the length of alkyl-chain and the steric hindrance due to the structure of alkyl groups on complexation.

  • PDF

Synthesis, Characterization and DNA Interaction Studies of (N,N'-Bis(5-phenylazosalicylaldehyde)-ethylenediamine) Cobalt(II) Complex

  • Sohrabi, Nasrin;Rasouli, Nahid;Kamkar, Mehdi
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2523-2528
    • /
    • 2014
  • In the present study, at first, azo Schiff base ligand of (N,N'-bis(5-phenylazosalicylaldehyde)-ethylenediamine) ($H_2L$) has been synthesized by condensation reaction of 5-phenylazosalicylaldehyde and ethylenediamine in 2:1 molar ratio, respectively. Then, its cobalt complex (CoL) was synthesized by reaction of $Co(OAc)_2{\cdot}4H_2O$ with ligand ($H_2L$) in 1:1 molar ratio in ethanol solvent. This ligand and its cobalt complex containing azo functional groups were characterized using elemental analysis, $^1H$-NMR, UV-vis and IR spectroscopies. Subsequently, the interaction between native calf thymus deoxyribonucleic acid (ct-DNA) and CoL complex was investigated in 10 mM Tris/HCl buffer solution, pH = 7 using UV-vis absorption, thermal denaturation technique and viscosity measurements. From spectrophotometric titration experiments, the binding constant of CoL complex with ct-DNA was found to be $(2.4{\pm}0.2){\times}10^4M^{-1}$. The thermodynamic parameters were calculated by van't Hoff equation.The enthalpy and entropy changes were $5753.94{\pm}172.66kcal/mol$ and $43.93{\pm}1.18cal/mol{\cdot}K$ at $25^{\circ}C$, respectively. Thermal denaturation experiments represent the increasing of melting temperature of ct-DNA (about $0.93^{\circ}C$) due to binding of CoL complex. The results indicate that the process is entropy-driven and suggest that hydrophobic interactions are the main driving force for the complex formation.

Hygroscopicity of 1:2 Choline Chloride:Ethylene Glycol Deep Eutectic Solvent: A Hindrance to its Electroplating Industry Adoption

  • Brusas, John Raymund;Dela Pena, Eden May B.
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.387-397
    • /
    • 2021
  • Deep eutectic solvents have been established as feasible metal electroplating solvent alternatives over traditional toxic aqueous plating baths. However, water, either added intentionally or unintentionally, can significantly influence the solvent's physical properties and performance, thereby hindering its industry application. In this study, the hygroscopicity, or the ability to absorb moisture from the environment, of synthesized ethaline (1:2 choline chloride:ethylene glycol) was investigated. The kinematic viscosity, electrical conductivity, electrochemical window, and water content of ethaline were monitored over a 2-week period. Karl Fischer titration tests showed that ethaline exposed to the atmosphere displayed significant hygroscopicity compared to its unexposed counterpart. 1H NMR spectroscopy revealed that water vapor was readily absorbed at the surface due to the hydrophilic groups present in the ethaline molecule. Water uptake resulted in the decrease in viscosity, increase in electrical conductivity and narrowing of the electrochemical window of ethaline. Solution heating at 100℃ removed the absorbed moisture and allowed the recovery of the solvent's initial properties.