• Title/Summary/Keyword: $^{99m}Tc$-labeling

Search Result 61, Processing Time 0.018 seconds

Synthesis Characterization and Biodistribution of $^{99m}Tc$-Ethyl-3-Isocyanobutyrate as a New Myocardial Perfusion Agent (새로운 심관관류 영상 화합물로서 $^{99m}Tc$-Ethyl-3-Isocyano-butyrate의 합성, 표지 및 체내동태에 대한 연구)

  • Lee, Myung-Chul;Cho, Jung-Hyuck;Lee, Dong-Soo;Lim, Sang-Moo;Oh, Seung-Joon;Chung, Soo-Wook;Lee, Kyung-Han;Jeong, Jae-Min;Chung, June-Key;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.27 no.2
    • /
    • pp.223-232
    • /
    • 1993
  • Technetium labeled isonitrile analogues are widely used as myocardial perfusion imaging agents. We synthesized and characterized a new isonitrile compound, ethyl 3-isocyanobutyrate(EIB). Proton and $^{13}C$ NMR spectroscopy and thin layer chromatography with a $C_{18}$ coat was performed. EIB was easily labeled with $^{99m}TcO_4^-$- with sodium dithionite. The labeling efficiency measured by RP-HPLC was over 95%. The labeled product was stable with dilution in normal saline and with prolonged incubation at room temperature. There was no formation of secondary products or free $^{99m}TcO_4^-$. In vivo kinetics study of $^{99m}Tc$ (I) labeled EIB in rabbits showed adequate myocardial uptake, good contrast against lung background, and relatively rapid liver clearance. The heart to lung ratio was over 2.5 and the heart to liver ratio was approximately from 0.4 to 5 at 60 minutes post injection. Hepatic clearance of $^{99m}Tc-MIBI$ was faster ($t_{1/2}$=6 minutes) than that of $^{99m}Tc-MIBI$. In vivo kinetics observed in dog was similar to that in rabbit but there was faster gallbladder filling, and thus lower liver background. SPECT imaging of the canine myocardium showed favorable imaging characteristics. However, biodistribution in mice demonstrated a myocardial % injected dose/organ of less than 0.1%. This was thought to be due to interspecies difference in plasma esterase activity. In human plasma, $^{99m}Tc$ ( I ) labeled EIB was stable for at least 2 hours, without production of secondary products by HPLC. We conclude that ethyl 3-isocyanobutyrate may be a potential new myocardial perfusion imaging agent and deserves further investigation as to its usefulness for clinical use.

  • PDF

Radiolabeling of antibody-mimetic scaffold protein with 99mTc tricarbonyl precursor via hexahistidine (His6)-tag

  • Shim, Ha Eun;Kim, Do Hee;Lee, Chang Heon;Choi, Dae seong;Lee, Dong-Eun
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.1
    • /
    • pp.11-17
    • /
    • 2019
  • Recently, antibody-like scaffold proteins have received a great deal of interest in diagnosis and therapy applications because of their intrinsic features that are often required for tumor imaging and therapy. Intrinsic issues that are associated with therapeutic application of antibody-like scaffold proteins, particularly in cancer treatment, include an efficient and straightforward radiolabeling for understanding in vivo biodistribution and excretion route, and monitoring therapeutic responses. Herein, we report an efficient and straightforward method for radiolabeling of antibody-like scaffold proteins with the $[^{99m}Tc(OH_2)_3(CO)_3]^+$ ($^{99m}Tc$-tricarbonyl) by using a site-specific direct labeling method via hexahistidine-tag, which is a widely used for general purification of recombinant proteins with His-affinity chromatography. Repebody is a new class of antibody-like scaffold protein that consists of highly diverse leucine-rich repeat (LRR) modules. Although all possible biomedical applications with repebody are ongoing, it's in vivo biodistribution and excretion pathway has not yet been explored. In this study, hexahistidine ($His_6$)-tag bearing repebody (rEgH9) was labeled with [$^{99m}Tc$]-tricarbonyl. Repebody protein was radiolabeled with high radiolabeling efficiency (>90%) and radiolabeled compound was more than 99% pure after purification. These results clearly demonstrate that the present radiolabeling method will be useful molecular imaging study.

Migration of $^{99m}Tc$-Hexamethylpropylene Amino Oxime (HMPAO) Labeled Immature and Mature Dendritic Cells in the Mouse (마우스에서 Tc-99m HMPAO 표지 미성숙 및 성숙 수지상세포의 이동에 관한 연구)

  • Li, Ming-Hao;Lee, Je-Jung;Min, Jung-Joon;Heo, Young-Jun;Song, Ho-Chun;Park, Young-Kyu;Park, An-Na;Bom, Hee-Seung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.1
    • /
    • pp.26-33
    • /
    • 2005
  • Purpose: The purpose of this study is to evaluate migration of technetium-99m hexamethylpropylene amine oxime ($^{99m}Tc$-HMPAO) labeled immature and mature dendritic cells (DC) in the mouse. Methods: DC were collected from bone marrow (BM) of tibiae and femurs of mice. Immature and mature DC from BM cells were radiolabeled with $^{99m}Tc$-HMPAO. To evaluate the functional and phenotypic changes of DC from radiolabeling, the allogeneic mixed lymphocyte reaction (MLR) and fluorescence-activated cell sorting (FACS) analysis were performed before and after labeling with $^{99m}Tc$-HMPAO. Migration of intravenously injected DC (iv-DC) was assessed by serial gamma camera images of mice with or without subcutaneous tumor. Percent injected dose per gram (%ID/g) was calculated in lungs, liver, spleen, kidneys, and tumor through dissection of each mice after 24 hours of injection. Results: Labeling efficiency of immature and mature DC were $60.4{\pm}5.4%\;and\;61.8{\pm}6.7%$, respectively. Iv-DC initially appeared in the lungs, then redistributed mainly to liver and spleen. Migration of mature DC to spleen was significantly higher than that of immature DC ($38.3{\pm}4.0%\;vs.\;32.2{\pm}4.1%$ in control group, $40.4{\pm}4.1%\;vs.\;35.9{\pm}3.8%$ in tumor group; p<0.05). Migration to tumor was also significantly higher in mature DC than in immature DC ($2.4{\pm}0.3%\;vs\;1.7{\pm}0.2%$; p=0.034). Conclusion: Assessment of migration pattern of DC in mice was possible using $^{99m}Tc$-HMPAO labeled immature and mature DC. Migration of mature DC to spleen and tumor was higher than that of immature DC when they were i.v. injected.

Retention Characteristics of Tc-99m-Pullulan-Derivatives in CT26 Tumor of Mice (마우스 CT26 종양에서 Tc-99m 표지 플루란유도체의 저류 특성)

  • Heo, Young-Jun;Song, Ho-Chun;Bom, Hee-Seung;Na, Kun;Kim, Seong-Min
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.6
    • /
    • pp.393-401
    • /
    • 2003
  • Objective: Pullulan derivatives (PD) can be used to make self-assembled hydrogel nanoparticles which are responsive to ionic strength. The aim of this study is to evaluate the potential of PD as a retaining carrier of radioisotope inside tumors. Materials and Methods: Four types of PD were evaluated which included pullulan acetate (PA), succinylated PA (SPA), PA-DTPA and SPA-DTPA conjugates. They were radiolabeled with Tc-99m. Labelling efficiencies were determined at 30 min, 1, 2, 4 and 12 hours after radiolabeling. CT-25 colon cancer cells were subcutaneously injected into Balb/c mice. After 2 weeks of subcutaneous injection, Tc-99m-labelled PD (Tc-99m-PD) were injected into the tumors. Whole body images of mice were obtained at 30 min, 1, 2, and 12 hr after intratumoral injection. All twenty mice were grouped into four groups by largest diameter; control A (largest diameter = 5 mm, n = 5), control B (largest diameter = 10 mm, n = 5), pullulan A (largest diameter = 5 mm, n = 5), pllulan B (largest diameter = 10 mm, n = 5). Dynamic images were obtained for 1 hour after intratumoral injection. Static images were obtained at 1 hr, 2 hr, 3 hr and 4 hr after intratumoral injection with Tc-99m pertechnetate and Tc-99m-PA. Target-to-background ratios and retention rates were calculated. Results: Labeling efficiencies of PA, SPA, PA-DTPA and SPA-DTPA were $94.5{\pm}5.9%,\;97.8{\pm}3.5%\;94.2{\pm}3.8%,\;and\;92.5{\pm}6.2%$, respectively (p>0.05). Percent retention rates (%RR) of PA and PA-DTPA were significantly higher than those of control, however, those of SP-DTPA and SPA became similar to control at 4 and 12 hr, respectively. %RR of pullulan A and pullulan B at 1, 4 and 8 hr is significantly higher than that of control (p < 0.05). However, %RR between pullulan A and pullulan B were similar. Conclusion: The lonic strength dependent PD-nanoparticles are retained in the tumor. No difference of %RR according to tumor size was noted. Therapeutic application of PD labelled with beta- or alpha- emitting radionuclides can be expected.

Radiolabeling of nanoparticle for enhanced molecular imaging

  • Kim, Ho Young;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.2
    • /
    • pp.103-112
    • /
    • 2017
  • The combination of nanoparticle with radioisotope could give the in vivo information with high sensitivity and specificity. However, radioisotope labeling of nanoparticle is very difficult and radioisotopes have different physicochemical properties, so the radioisotope selection of nanoparticle should be carefully considered. $^{18}F$ was first option to be considered for labeling of nanoparticle. For the labeling of $^{18}F$ with nanoparticle, Prosthetic group is widely used. Iodine, another radioactive halogen, is often used. Since radioiodine isotopes are various, they can be used for different imaging technique or therapy in the same labeling procedures. $^{99m}Tc$ can easily be obtained as pertechnatate ($^{99m}{TcO_4}^-$) by commercial generator. Ionic $^{68}Ga$ (III) in dilute HCl solution is also obtained by generator system, but $^{68}Ga$ can be substituted for $^{67}Ga$ because of the short half-life (67.8 min). $^{64}Cu$ emits not only positron but also ${\beta}-particle$. Therefore $^{64}Cu$ can be used for imaging and therapy at the same time. These radioactive metals can be labeled with nanoparticle using the bifunctional chelator. $^{89}Zr$ has longer half-life (78.4 h) and is used for the longer imaging time. Unlike different metals, $^{89}Zr$ should use the other chelate such as DFO, 3,4,3-(LI-1,2-HOPO) or DFOB.

A new efficient route for synthesis of R,R- and S,S-hexamethylpropyleneamine oxime for labeling with technetium-99m

  • Vinay Kumar Banka;Young Ju Kim;Yun-Sang Lee;Jae Min Jeong
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.75-91
    • /
    • 2020
  • [99mTc]Tc-Hexamethylpropylene amine oxime (HMPAO) is currently used as a regional cerebral blood flow imaging agent for single photon emission computed tomography (SPECT). The HMPAO ligand exists in two isomeric forms: d,l and meso showing different properties in vivo. Later studies indicated that brain uptake patterns of 99mTc-complexes formed from separated enantiomers differed. Separation of enantiomers is difficult by fractional crystallizations method. Usually, the substance is obtained in low chemical yield in a time-consuming procedure. Furthermore, the final product still contains some impurity. So we have developed new efficient route for synthesis of R,R- and S,S-HMPAO enantiomeric compounds in 6-steps. Nucleophilic substitution (SN2) reactions of 2,2-dimethylpropane-1,3-diamine either with S- (1a) or R-methyl2-chloropropanoate (1b) were performed to produce compounds R,R- (2a) or S,S-isomer (2b) derivatives protected with benzylchloroformate (Cbz), respectively. And then Weinreb amide and methylation reaction using Grignard reagent, oxime formation with ketone group and deprotectiion of Cbz group by hydrogenolysis gave S,S- (7a) or R,R-HMPAO (7b), respectively. Entaniomeric compounds were synthesied with high yield and purity without any undesired product. The 7a or 7b kits containing 10 ㎍ SnCl2-2H2O were labeled with 99mTc with high radiolabeling yield (90%).

A Study on the Quality Improvement of Brain Perfusion SPECT Image (뇌혈류 단일광자방출단층촬영 영상 품질 향상에 대한 연구)

  • Kil, Sang-Hyeong;Lim, Yung-Hyun;Park, Gwang-Yeol;Cho, Seong-Mook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.2
    • /
    • pp.13-19
    • /
    • 2019
  • Purpose Tc-99m HMPAO is widely used radiopharmaceutical for brain perfusion SPECT. Tc-99m HMPAO is chemically unstable and is liable to show deterioration of labeling efficiency due to high incidence of secondary Tc-99m HMPAO complex, free pertechnetate and reduced-hydrolyzed Tc-99m. In this study, we investigated whether sialogogues administration could reduce the impurities of Tc-99m HMPAO. Materials and Methods In thirty subjects(20 male and 10 female, age range 19~89 years, mean age $60.7{\pm}14.5years$), brain perfusion SPECT were performed at basal and citric acid stimulation states consecutively after injection of 555 MBq of Tc-99m HMPAO. In the salivary glands, the uptake coefficient was calculated using Siemens processing program. Statistical comparison between before and after the citric acid stimulation performed paired t-test. P value less than 0.05 was regarded as statistically significant. Results Salivary glands uptake was $12900{\pm}3101$ counts in basal and $10677{\pm}2742$ counts in citric acid stimulation states. Unnecessary impurities in the body is much decreased after citric acid administration(t=10.78, P<0.05). The image quality was much improved after administration of citric acid and the regional cerebral perfusion was clearly from demarcated the background. Conclusion The impurity is distributed throughout the body particularly in the salivary glands and nasal mucosa when Tc-99m HMPAO brain perfusion SPECT is performed. If this impurities is not removed, the quality of the image may deteriorate, resulting in errors in visual evaluation. The use of sialogogues could be helpful for decreasing unnecessary impurities in the body.

The Evaluation of Factors Which Influence Binding Efficiency of Modified in Vivo Erythrocyte Labeling Technique (변형 체내 표지법에 의한 적혈구 표지시 결합효율에 영향을 미치는 인자 평가)

  • Seo, Han-Kyung;Kim, Min-Woo;Lim, Seok-Tae;Sohn, Myung-Hee
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.4
    • /
    • pp.300-305
    • /
    • 2004
  • Purpose: We underwent this study to evaluate the factors which influence labeling efficiency when modified in vivo erythrocyte labeling technique was used. Materials and methods: Thirty healthy volunteers (M:F=19:11, age:$25{\pm}2$ yrs) were enrolled in this study. Totally, two hundred ten samples were obtained from them. The 1 mg of stannous pyrophosphate was injected intravenously at the beginning of labeling. After suitable tinning time (5 min, 20 min, 35 min) passed by, blood (5 mL, 3 mL or 1 mL) was withdrawn into 10 mL syringe previously containing Tc-99m (740 MBq) and anticoagulant (heparin, ACD or CPDA) through 19-gauged scalp needle. The generator ingrowth time of Tc-99m was within 24 hrs in each case. The blood samples were placed on rotating invertor during incubation (10 min, 25 min, 40 min) but some of them were not. Immediately after the conclusion of incubation, the labeled blood specimens to analyze were centrifuged. and then %Unbound Tc-99m was calculated. Statical analysis was used paired T-test and one way ANOVA with SPSS 10.0. Results: The binding efficiency at 1 mL of blood volume was $73{\pm}32%,\;91{\pm}10%$ at 3 mL and $96{\pm}7%$ at 5 mL (p<0.01). The binding efficiency at 5 min of tinning time was $45{\pm}23%,\;98{\pm}6%$, at 20 min and $97{\pm}8%$ at 35 min (p<0.001). The binding efficiency at 10 min of incubation time was $96{\pm}7%,\;95{\pm}12%$ at 25 min and $98{\pm}3%$ at 40 min (p>0.05). The binding efficiency in case of using rotating invertor was $96{\pm}7%$ and the binding efficiency in case of not using it was $87{\pm}18%$ (p>0.05). There was no significant difference between them. In binding efficiency according to kinds of anticoagulants, ACD was $98{\pm}4%$, CPDA was $97{\pm}6%$ and heparin was $89{\pm}20%$ (p<0.001). Conclusion: When modified in vivo erythrocyte labeling technique is used with Tc-99m, the methods to obtain the highest labeling efficiency are as follow. The withdrawing blood volume should be over 3 mL, tinning time should be kept between 20 min and 35 min, and incubation time should be kept between 10 min and 40 min. ACD or CPDA have to be used as a anticoagulant except heparin and the blood samples should be placed on rotating invertor during incubation.

Radiopharmceutical Factors in the Prepartion of $^{99m}Tc-HMPAO$ Images of the Brain (뇌스캔용 $^{99m}Tc-HM-PAO$의 방사성 동위원소표지에 영향을 미치는 인자에 대한 연구)

  • Yeom, Mi-Kyoung;Kim, Sang-Eun;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.25 no.1
    • /
    • pp.117-121
    • /
    • 1991
  • Technetium-99m-hexamethylpropyleneamine oxime $(^{99m}Tc-HM-PAO)$ is a neutral-lipophilic chelate which is used for scanning cerebral blood flow. The labeling efficiencies of $^{99m}Tc-HM-PAO$ is known to be sensitive to the amount of pertechnetate added and the quality of the pertechnetate. Because of these factors, the manufacture recommends that HM-PAO kits be reconstituted with a maximum of 30 mCi pertechnetate which was eluted <4 hr earlier from a generator which had been eluted < 24 hr previously. So we measured the labelling efficiencies and the decomposition rate constant according to the amount of pertechnetate added, the volume of pertechnette added, and generator in-growth time. We used the 3-system chromatographic methods (paper & ITLC-SG chromatography) which analyzed the labelling efficiencies of the $^{99m}Tc-HM-PAO$. There was no significant difference in labelling efficiencies between variable pertechnetate acitvities added. ($39.9{\pm}4.9\;mCi:\;87.8{\pm}5.1\;(%)$, $60.8{\pm}5.0\;mCi:\;90.7{\pm}2.2\;(%)$, $79.0{\pm}6.0\;mCi:\;86.8{\pm}3.9\;(%)$, $106.6{\pm}11.6\;mCi:\;87.7{\pm}1.2\;(%)$, p>0.05) No significant difference in labelling efficiencies were found between pertechnetate of 4ml and 5ml. (4ml : $89.1{\pm}3.2(%)$, 5ml: $87.3{\pm}4.0(%)$, p>0.05). There was no difference between 1-6 and 10-48 hr of generator in-growth time. (1-6 hr: $87.8{\pm}4.0(%)$, 10-48 hr: $89.6{\pm}1.6(%)$, p>0.05) The mean value of decomposition rate constant was $0.196{\pm}0.097\;(hr^{-1})$, and there were no difference according to the amount of pertecnetate added and the volume of pertecnetate added, ($39.9{\pm}4.9\;mCi:\;0.208{\pm}0.059\;(hr^{-1})$, $60.8{\pm}5.0\;mCi:\;0.191{\pm}0.100\;(hr^{-1})$ $79.0{\pm}6.0\;mCi:\;0.192{\pm}0.118\;(hr^{-1})$, $106.6{\pm}11.6\;mCi:\;0.212{\pm}0.030\;(hr^{-1})$, p>0.05, 4 ml: $0.200{\pm}0.074\;(hr^{-1})$, Sml: $0.193{\pm}0.115\;(hr^{-1})$, p>0.05). In the case of using the first eluate, the labelling efficiency of $^{99m}Tc-HM-PAO$ W3S 82.1%. These data suggest that there were no significant alteration in labelling efficiency of $^{99m}Tc-HM-PAO$ according to the considerable range of pertechnetate activities and volume added, and generator in-growth time. Also, it was shown that one vial of HM-PAO kit supplied the $^{99m}Tc-HM-PAO$ which was used for 3-4 patients.

  • PDF

[ $^{99m}Technetium-Heat$ ] Damaged Erythrocyte Spleen Scan ($^{99m}Technetium$-가열처리 적혈구에 의한 비장스캔)

  • Choi, Chang-Woon;Park, Seok-Gun;Chung, June-Key;Lee, Myung-Chul;Cho, Bo-Youn;Koh, Chang-Soon;Chung, Soon-Il
    • The Korean Journal of Nuclear Medicine
    • /
    • v.20 no.1
    • /
    • pp.39-43
    • /
    • 1986
  • [ $^{99m}Technetium-Heat$ ] damaged erythrocyte were used as spleen scanning agents in 12 patients from July, 1985 to April, 1986. We used this scan to evaluate situs inversus, asplenia, accessory spleen, hypersplenism, splenic infarction, tumor staging and evaluation of therapy, especially when the $^{99m}Tc-tin$ colloid scans were not definite for diagnosis. The techniques applied to these scans were in vivo/in vitro-labeling method and heating-method to damage the erythrocytes. Liver-to-spleen uptake ratios were increased upto 100 : 1 and interference from the left lobe of the liver was eliminated. These scans were helpful to evaluate the spleen.

  • PDF