Browse > Article
http://dx.doi.org/10.22643/JRMP.2017.3.2.103

Radiolabeling of nanoparticle for enhanced molecular imaging  

Kim, Ho Young (Department of Nuclear Medicine, Seoul National University College of Medicine)
Lee, Yun-Sang (Department of Nuclear Medicine, Seoul National University Hospital)
Jeong, Jae Min (Department of Nuclear Medicine, Seoul National University College of Medicine)
Publication Information
Journal of Radiopharmaceuticals and Molecular Probes / v.3, no.2, 2017 , pp. 103-112 More about this Journal
Abstract
The combination of nanoparticle with radioisotope could give the in vivo information with high sensitivity and specificity. However, radioisotope labeling of nanoparticle is very difficult and radioisotopes have different physicochemical properties, so the radioisotope selection of nanoparticle should be carefully considered. $^{18}F$ was first option to be considered for labeling of nanoparticle. For the labeling of $^{18}F$ with nanoparticle, Prosthetic group is widely used. Iodine, another radioactive halogen, is often used. Since radioiodine isotopes are various, they can be used for different imaging technique or therapy in the same labeling procedures. $^{99m}Tc$ can easily be obtained as pertechnatate ($^{99m}{TcO_4}^-$) by commercial generator. Ionic $^{68}Ga$ (III) in dilute HCl solution is also obtained by generator system, but $^{68}Ga$ can be substituted for $^{67}Ga$ because of the short half-life (67.8 min). $^{64}Cu$ emits not only positron but also ${\beta}-particle$. Therefore $^{64}Cu$ can be used for imaging and therapy at the same time. These radioactive metals can be labeled with nanoparticle using the bifunctional chelator. $^{89}Zr$ has longer half-life (78.4 h) and is used for the longer imaging time. Unlike different metals, $^{89}Zr$ should use the other chelate such as DFO, 3,4,3-(LI-1,2-HOPO) or DFOB.
Keywords
Nanoparticle; Radiohalogen; Radiometal; PET; SPECT;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Min JJ, Chung JK, Lee YJ, Jeong JM, Lee DS, Jang JJ, Lee MC, Cho BY. Relationship between expression of the sodium/iodide symporter and 131I uptake in recurrent lesions of differentiated thyroid carcinoma. Eur J Nucl Med 2001;28:639-645.   DOI
2 McConahey PJ, Dixon FJ. A method of trace iodination of proteins for immunologic studies. Int Arch Allergy Appl Immunol 1966;29:185-189.   DOI
3 Fraker PJ, Speck JC. Protein and cell membrane iodinations with a sparingly soluble chloramide, 1,3,4,6-tetrachloro-3a,6adiphenylglycoluril 1978. Biochem Biophys Res Commun 2012;425:510-518.   DOI
4 Bolton AE, Hunter WM. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J 1973;133:529-539.   DOI
5 Saha GB. Fundamentals of Nuclear Pharmacy. 5th Ed. New York. Springer-Verlag; 2003. p. 127-128.
6 Shao X, Agarwal A, Rajian JR, Kotov NA, Wang X. Synthesis and bioevaluation of $^{125}$I-labeled gold nanorods. Nanotechnology 2011;22:135102.   DOI
7 Morales-Avila E, Ferro-Flores G, Ocampo-Garcia BE, De Leon-Rodriguez LM, Santos-Cuevas CL, Garcia- Becerra R, Medina LA, Gomez-Olivan L. Multimeric system of 99mTc-labeled gold nanoparticles conjugated to c[RGDfK(C)] for molecular imaging of tumor ${\alpha}(v){\beta}(3)$ expression. Bioconjug Chem 2011;22(5):913-922.   DOI
8 Torres Martin de Rosales R, Tavare R, Glaria A, Varma G, Protti A, Blower PJ. ($^{99}m$)Tc-bisphosphonate-iron oxide nanoparticle conjugates for dual-modality biomedical imaging. Bioconjug Chem 2011;22:455-465.   DOI
9 Loc'H C, Maziere B, Comar D, Knipper R. A new preparation of germanium 68. Int J Appl Radiat Isot 1982;33:267-270.
10 van der Walt TN, Vermeulen C. Thick targets for the production of some radionuclides and the chemical processing of these targets at iThemba LABS. Nuclear Instruments and Methods in Physics Research Section A 2004;521:171-175.   DOI
11 Gleason GI. A positron cow. Int J Appl Radiat Isot 1960;8:90-94.   DOI
12 Yano Y, Anger HO. A GALLIUM-68 POSITRON COW FOR MEDICAL USE. J Nucl Med 1964;5:484-487.
13 Schuhmacher J, Marier-Brost W. A new $^{68}Ge$/$^{68}Ga$ radioisotope generator system for production of $^{68}Ga$ in dilute HCl. Int J Appl Radiat Isot 1981;32:31-36.   DOI
14 Little FE, Lagunas-Solarm MC. Cyclotron production of $^{67}Ga$. Cross sections and thick-target yields for the $^{67}Zn$(P,n) and $^{68}Zn$(p,2n) reactions. Int J Appl Radiat Isot 1983;34:631-637.   DOI
15 Steyn J, Meyer BR. Production of $^{67}Ga$ by deuteron bombardment of natural zinc. Int J Appl Radiat Isot 1973;24:369-372.   DOI
16 Shetty D, Lee YS, Jeong JM. (68)Ga-labeled radiopharmaceuticals for positron emission tomography. Nucl Med Mol Imaging 2010;44:233-240.   DOI
17 Xie H, Wang ZJ, Bao A, Goins B, Phillips WT. In vivo PET imaging and biodistribution of radiolabeled gold nanoshells in rats with tumor xenografts. Int J Pharm 2010;395:324-330.   DOI
18 Shetty D, Choi SY, Jeong JM, Hoigebazar L, Lee Y-S, Lee DS, Chung JK, Lee MC, Chung YK. Formation and characterization of gallium(III) complexes with monoamide derivatives of 1,4,7-triazacyclononane-1,4,7-triacetic acid: A study of the dependency of structure on reaction pH. Eur J Inorg Chem 2010;34:5432-5438.
19 Lee YK, Jeong JM, Hoigebazar L, Yang BY, Lee YS, Lee BC, Youn H, Lee DS, Chung JK, Lee MC. Nanoparticles modified by encapsulation of ligands with a long alkyl chain to affect multispecific and multimodal imaging. J Nucl Med 2012;53:1462-1470.   DOI
20 Szelecsenyi F, Blessing G, Qaim SM. Excitation functions of proton induced nuclear reactions on enriched $^{61}Ni$ and $^{64}Ni$: Possibility of production of no-carrier-added $^{61}Cu$ and $^{64}Cu$ at a small cyclotron. Appl Radiat Isot 1993;44:575-580.   DOI
21 Chen K, Li Z-B, Wang H, Cai W, Chen X. Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur J Nucl Med Mol Imaging 2008;35:2235-2244.   DOI
22 Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H.. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2007;2:47-52.   DOI
23 Wong RM, Gilbert DA, Liu K, Louie AY. Rapid sizecontrolled synthesis of dextran-coated, 64Cu-doped iron oxide nanoparticles. ACS Nano 2012;6:3461-3467.   DOI
24 Deri MA, Ponnala S, Zeglis BM, Pohl G, Dannenberg JJ, Lewis JS, Francesconi LC. Alternative chelator for $^{89}Zr$ radiopharmaceuticals: radiolabeling and evaluation of 3,4,3-(LI-1,2-HOPO). J Med Chem 2014;57:4849-4860.   DOI
25 Schubiger PA, Lehmann L, Friebe M. (Eds.) PET chemistry: The driving force in molecular imaging. Springer-Verlag, Berlin-Heidelberg; 2007. p.6
26 Richardson-Sanchez T, Tieu W, Gotsbacher MP, Telfer TJ, Codd R. Exploiting the biosynthetic machinery of streptomyces pilosus to engineer a water-soluble zirconium(iv) chelator. Org Biomol Chem 2017;15:5719-5730.   DOI
27 Phelps ME. PET: The merging of biology and imaging into molecular imaging. J Nucl Med 2000;41:661-681.
28 Madsen MT. Recent advances in SPECT Imaging. J Nucl Med 2007;48:661-673.   DOI
29 Ametamey SM, Honer M, Schubiger PA. Molecular imaging with PET. Chem Rev 2008;108:1501-1516.   DOI
30 Rudin M, Weissleder R. Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2003;2:123-131.   DOI
31 Saha GB. Fundamentals of nuclear pharmacy. 5th Ed. New York: Springer-Verlag; 2003. p. 60-61.
32 Guillaume M, Luxen A, Nebeling B, Argentini M, Clark JC, Pike VW. Recommendations for fluorine-18 production. Appl Radiat Isot 1991;42:749-762.   DOI
33 Teare H, Robins EG, Kirjavainen A, Forsback S, Sandford G, Solin O, et al. Radiosynthesis and evaluation of [18F]selectfluor bis(triflate). Angew Chem Int Ed Engl 2010;49:6821-6824.   DOI
34 Visser GWM. Bakker, CNM. Herscheid, JDM. Brinkman, G. Hoekstra, A. The chemical properties of [$^{18}F$]- acetylhypofluorite in acetic acid solution. J Label compd Radiopharm 1984;21:1226.
35 Oberdorfer F, Hofmann E, Marier-Brost W. Preparation of 18F-labelled N-fluoropyridinium triflate. J Label compd Radiopharm 1988;25:999-1005.   DOI
36 Satyamurthy N, Bida GT, Phelps ME, Barrio JR. N-[18F] Fluoro-N-alkylsulfonamides: novel reagents for mild and regioselective radiofluorination. Int J Rad Appl Instrum A. 1990;41:733-7388.   DOI
37 Berndt M, Pietzsch J, Wuest F. Labeling of low-density lipoproteins using the 18F-labeled thiol-reactive reagent N-[6-(4-[18F]fluorobenzylidene)aminooxyhexyl] maleimide. Nucl Med Biol 2007;34:5-15.   DOI
38 Koslowsky I, Mercer J, Wuest F. Synthesis and application of 4-[(18) F]fluorobenzylamine: A versatile building block for the preparation of PET radiotracers. Org Biomol Chem 2010;8:4730-4735.   DOI
39 Haskali MB, Roselt PD, Karas JA, Noonan W, Wichmann CW, Katsifis A, Hicks, RJ, Hutton, CA. One-step radiosynthesis of 4-nitrophenyl 2-[(18)F]fluoropropionate ([(18)F]NFP); improved preparation of radiolabeled peptides for PET imaging. J Labelled Comp Radiopharm 2013;56:726-730.   DOI
40 Tang G, Zeng W, Yu M, Kabalka G. Facile synthesis of N-succinimidyl 4-[18F]fluorobenzoate ([$^{18}F$]SFB) for protein labeling. J Label compd Radiopharm 2008;51:68-71.   DOI
41 Kondo K, Lambrecht RM, Wolf AP. Iodine-123 production for radiopharmaceuticals-XX excitation functions of the 124Te(p, 2n)123I and 124Te(p, n)124I reactions and the effect of target enrichment on radionuclidic purity.. Int J Appl Radiat Isot 1977;28:395-401.   DOI
42 Cai W, Zhang X, Wu Y, Chen X. A Thiol-Reactive 18F-Labeling agent, N-[2-(4-18F-fluorobenzamido)Ethyl] maleimide, and synthesis of RGD peptide-based tracer for PET Imaging of alpha v beta 3 integrin expression. J Nucl Med 2006;47:1172-1180.
43 Jacobson O, Kiesewetter DO, Chen X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug Chem 2015;26:1-18.   DOI
44 Rojas S, Gispert JD, Menchón C, Baldoví HG, Buaki- Sogo M, Rocha M, Abad S, Victor VM, Garcia H, Herance JR. Novel methodology for labelling mesoporous silica nanoparticles using the 18F isotope and their in vivo biodistribution by positron emission tomography. J of Nanopart Res 2015;17:131.   DOI
45 Oliver SCN, Leu MY, DeMarco JJ, Chow PE, Lee SP, McCannel TA. Attenuation of iodine 125 radiation with vitreous substitutes in the treatment of uveal melanoma. Arch Ophthalmol 2010;128:888-893.   DOI
46 Lambrecht RM, Sajjad M, Qureshi MA, Al-Tanbawi SJ. Production of iodine-124. J Radioanal Nucl Chem Letters 1988;127:143-150.   DOI
47 Braghirolli AM, Waissmann W, da Silva JB, dos Santos GR. Production of iodine-124 and its applications in nuclear medicine. Appl Radiat Isot 2014;90:138-148.   DOI