Browse > Article
http://dx.doi.org/10.22643/JRMP.2019.5.1.11

Radiolabeling of antibody-mimetic scaffold protein with 99mTc tricarbonyl precursor via hexahistidine (His6)-tag  

Shim, Ha Eun (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Kim, Do Hee (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Lee, Chang Heon (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Choi, Dae seong (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Lee, Dong-Eun (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Publication Information
Journal of Radiopharmaceuticals and Molecular Probes / v.5, no.1, 2019 , pp. 11-17 More about this Journal
Abstract
Recently, antibody-like scaffold proteins have received a great deal of interest in diagnosis and therapy applications because of their intrinsic features that are often required for tumor imaging and therapy. Intrinsic issues that are associated with therapeutic application of antibody-like scaffold proteins, particularly in cancer treatment, include an efficient and straightforward radiolabeling for understanding in vivo biodistribution and excretion route, and monitoring therapeutic responses. Herein, we report an efficient and straightforward method for radiolabeling of antibody-like scaffold proteins with the $[^{99m}Tc(OH_2)_3(CO)_3]^+$ ($^{99m}Tc$-tricarbonyl) by using a site-specific direct labeling method via hexahistidine-tag, which is a widely used for general purification of recombinant proteins with His-affinity chromatography. Repebody is a new class of antibody-like scaffold protein that consists of highly diverse leucine-rich repeat (LRR) modules. Although all possible biomedical applications with repebody are ongoing, it's in vivo biodistribution and excretion pathway has not yet been explored. In this study, hexahistidine ($His_6$)-tag bearing repebody (rEgH9) was labeled with [$^{99m}Tc$]-tricarbonyl. Repebody protein was radiolabeled with high radiolabeling efficiency (>90%) and radiolabeled compound was more than 99% pure after purification. These results clearly demonstrate that the present radiolabeling method will be useful molecular imaging study.
Keywords
Radiolabeling; $^{99m}Tc$; tricarbonyl precursor; repebody protein; radio-ITLC;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tolmachev V, Orlova A. Influence of labelling methods on biodistribution and imaging properties of radiolabelled peptides for visualisation of molecular therapeutic targets. Curr Med Chem 2010;17:2636-2655.   DOI
2 Nunez R, Erwin WD, Wendt RE 3rd, Stachowiak A, Mar M, Stevens D, Madewell JE, Yeung HW, Macapinlac HA. Acquisition parameters for oncologic imaging with a new SPECT/multislice CT scanner. Mol Imaging Biol 2010;12:110-138.   DOI
3 Tait JF, Smith C, Gibson DF. Development of annexin V mutants suitable for labeling with Tc(I)-carbonyl complex. Bioconjugate Chem 2002;13:1119-1123.   DOI
4 Badar A, Williams J, de Rosales RT, Tavare R, Kampmeier F, Blower PJ, Mullen GE. Optimising the radiolabelling properties of technetium tricarbonyl and His-tagged proteins. EJNMMI Res 2014;4:14-21.   DOI
5 Waibel R, Alberto R, Willuda J, Finnern R, Schibli R, Stichelberger A, Egli A, Abram U, Mach JP, Pluckthun A, Schubiger PA. Stable one-step technetium-99m labeling of His-tagged recombinant proteins with a novel Tc(I)-carbonyl complex. Nat Biotechnol 1999;17:897-901.   DOI
6 Egli A, Alberto R, Tannahill L, Schibli R, Abram U, Schaffland A, Waibel R, Tourwe D, Jeannin L, Iterbeke K, Schubiger PA. Organometallic $^{99m}Tc$-aquaion labels peptide to an unprecedented high specific activity. J Nucl Med 1999;40:1913-1917.
7 Schibli R, Schubiger PA. Current use and future potential of organometallic radiopharmaceuticals. Eur J Nucl Med Mol Imaging 2002;29:1529-1542.   DOI
8 Engfeldt T, Tran T, Orlova A, Widstrom C, Feldwisch J, Abrahmsen L, Wennborg A, Karlstrom AE, Tolmachev V. $^{99m}Tc$-chelator engineering to improve tumour targeting properties of a HER2-specific Affibody molecule. Eur J Nucl Med Mol Imaging 2007;34:1843-1853.   DOI
9 Tran T, Engfeldt T, Orlova A, Widstrom C, Bruskin A, Tolmachev V, Karlstrom AE. In vivo evaluation of cysteine-based chelators for attachment of $^{99m}Tc$ to tumor-targeting Affibody molecules. Bioconjugate Chem 2007;18:549-558.   DOI
10 Tran T, Engfeldt T, Orlova A, Sandstrom M, Feldwisch J, Abrahmsen L, Wennborg A, Tolmachev V, Karlstrom AE. $^{99m}Tc$-maEEE-ZHER2:342, an Affibody molecule-based tracer for the detection of HER2 expression in malignant tumors. Bioconjugate Chem 2007;18:1956-1964.   DOI
11 Ekblad T, Tran T, Orlova A, Widstrom C, Feldwisch J, Abrahmsen L, Wennborg A, Karlstrom AE, Tolmachev V. Development and preclinical characterisation of $^{99m}Tc$-labelled Affibody molecules with reduced renal uptake. Eur J Nucl Med Mol Imaging 2008;35:2245-2255.   DOI
12 Tran TA, Ekblad T, Orlova A, Sandstrom M, Feldwisch J, Wennborg A, Abrahmsen L, Tolmachev V, Eriksson Karlstrom A. Effects of lysinecontaining mercaptoacetyl-based chelators on the biodistribution of $^{99m}Tc$-labeled anti-HER2 Affibody molecules. Bioconjugate Chem 2008;19:2568-2576.   DOI
13 Ahlgren S, Wallberg H, Tran TA, Widstrom C, Hjertman M, Abrahmsen L, Berndorff D, Dinkelborg LM, Cyr JE, Feldwisch J, Orlova A, Tolmachev V. Targeting of HER2-expressing tumors with a sitespecifically $^{99m}Tc$-labeled recombinant affibody molecule, ZHER2:2395, with C-terminally engineered cysteine. J Nucl Med 2009;50:781-789.   DOI
14 Nagasaki T, Hara M, Shiga K, Takeyama H. Relationship between inflammation and cancer progression: review of the recent advances in interleukin-6 signaling and its blockage in cancer therapy. Receptors Clin Investig 2014;1:e202.
15 Ekblad T, Orlova A, Feldwisch J, Wennborg A, Karlstrom AE, Tolmachev V. Positioning of $^{99m}Tc$chelators influences radiolabeling, stability and biodistribution of Affibody molecules. Bioorg Med Chem Lett 2009;19:3912-3914.   DOI
16 Kishimoto T. Interleukin-6: from basic science to medicine--40 years in immunology. Annu Rev Immunol 2005;23:1-21.   DOI
17 Hong DS, Angelo LS, Kurzrock R. Interleukin-6 and its receptor in cancer: implications for translational therapeutics. Cancer 2007;110:1911-1928.   DOI
18 Chames P, Regenmortel MV, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 2009;157:220-233.   DOI
19 Sawyer N, Speltz EB, Regan L. NextGen protein design. Biochem Soc Trans 2013;41:1131-1136.   DOI
20 Banta S, Dooley K, Shur O. Replacing antibodies: engineering new binding proteins. Annu Rev Biomed Eng 2013;15:93-113.   DOI
21 Lindbo S, Garousi J, Astrand M, Honarvar H, Orlova A, Hober S, Tolmachev V. Influence of histidine-containing tags on the biodistribution of ADAPT scaffold proteins. Bioconjugate Chem 2016;27:716-726.   DOI
22 Goldstein R, Sosabowski J, Livanos M, Leyton J, Vigor K, Bhavsar G, Nagy-Davidescu G, Rashid M, Miranda E, Yeung J, Tolner B, Pluckthun A, Mather S, Meyer T, Chester K. Development of the designed ankyrin repeat protein (DARPin) G3 for HER2 molecular imaging. Eur J Nucl Med Mol Imaging 2015;42:288-301.   DOI
23 Hackel BJ, Kimura RH, Gambhir SS. Use of $^{64}Cu$-labeled fibronectin domain with EGFR-overexpressing tumor xenograft: molecular imaging.Radiology 2012;263:179-188.   DOI
24 Ahlgren S, Tolmachev V. Radionuclide molecular imaging using Affibody molecules. Curr Pharm Biotechnol 2010;11:581-589.   DOI
25 Terwisscha van Scheltinga AG, Lub-de Hooge MN, Hinner MJ, Verheijen RB, Allersdorfer A, Hulsmeyer M, Nagengast WB, Schroder CP, Kosterink JG, de Vries EG, Audoly L, Olwill SA. In vivo visualization of MET tumor expression and anticalin biodistribution with the MET-specific anticalin $^{89}Zr$-PRS-110 PET tracer. J Nucl Med 2014;55:665-671.   DOI
26 Ackerman SE, Currier NV, Bergen JM, Cochran JR. Cystine-knot peptides: emerging tools for cancer imaging and therapy. Expert Rev Proteomics2014;11:561-572.   DOI
27 Lee SC, Park K, Han J, Lee JJ, Kim HJ, Hong S, Heu W, Kim YJ, Ha JS, Lee SG, Cheong HK, Jeon YH, Kim D, Kim HS. Design of a binding scaffold based on variable lymphocyte receptors of jawless vertebrates by module engineering. Proc Natl AcadSci U S A 2012;109:3299-3304.   DOI
28 Lee JJ, Kim HJ, Yang CS, Kyeong HH, Choi JM, Hwang DE, Yuk JM, Park K, Kim YJ, Lee SG, KimD, Jo EK, Cheong HK, Kim HS. A high-affinity protein binder that blocks the IL-6/STAT3 signalingpathway effectively suppresses non-small cell lung cancer. Mol Ther 2014 ;22:1254-1265.   DOI