• Title/Summary/Keyword: $^{18}F$-FDG 양전자 단층 촬영 영상

Search Result 26, Processing Time 0.029 seconds

Study of machine learning model for predicting non-small cell lung cancer metastasis using image texture feature (Image texture feature를 이용하여 비소세포폐암 전이 예측 머신러닝 모델 연구)

  • Hye Min Ju;Sang-Keun Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.313-315
    • /
    • 2023
  • 본 논문에서는 18F-FDG PET과 CT에서 추출한 영상인자를 이용하여 비소세포폐암의 전이를 예측하는 머신러닝 모델을 생성하였다. 18F-FDG는 종양의 포도당 대사 시 사용되며 이를 추적하여 환자의 암 세포를 진단하는데 사용되는 의료영상 기법 중 하나이다. PET과 CT 영상에서 추출한 이미지 특징은 종양의 생물학적 특성을 반영하며 해당 ROI로부터 계산되어 정량화된 값이다. 본 연구에서는 환자의 의료영상으로부터 image texture 프절 전이 예측에 있어 유의한 인자인지를 확인하기 위하여 AUC를 계산하고 단변량 분석을 진행하였다. PET과 CT에서 각각 4개(GLRLM_GLNU, SHAPE_Compacity only for 3D ROI, SHAPE_Volume_vx, SHAPE_Volume_mL)와 2개(NGLDM_Busyness, TLG_ml)의 image texture feature를 모델의 생성에 사용하였다. 생성된 각 모델의 성능을 평가하기 위해 accuracy와 AUC를 계산하였으며 그 결과 random forest(RF) 모델의 예측 정확도가 가장 높았다. 추출된 PET과 CT image texture feature를 함께 사용하여 모델을 훈련하였을 때가 각각 따로 사용하였을 때 보다 예측 성능이 개선됨을 확인하였다. 추출된 영상인자가 림프절 전이를 나타내는 바이오마커로서의 가능성을 확인할 수 있었으며 이러한 연구 결과를 바탕으로 개인별 의료 영상을 기반으로 한 비소세포폐암의 치료 전략을 수립할 수 있을 것이라 기대된다.

  • PDF

The analysis of 18F-FDG PET/CT Images According to the Time Flow (시간흐름에 따른 18F-FDG PET/CT의 영상 분석)

  • Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.1
    • /
    • pp.47-51
    • /
    • 2012
  • PET/CT is taken 1 hour after $^{18}F$-FDG(F-18-fluoro-2-deoxy-D-glucose) injection. However, these would be often delayed for more than 2 or 3 hours due to equipment fault or unexpected situation. In the study, SUV(standardized uptake value) were measured from got image over time according to the parts of the body. As a result, there were great and small decrease in liver(middle of the right hepatic lobe), fat(Lt pelvis), lung (Rt upper lobe), aorta(ascending aorta level) of the body in delayed image, and ${\Delta}$SUVmax was increase of 37% in bone only(L5 vertebral body) of the body. ${\Delta}$SUVmax was increase of 37.6% in lesion, and the contrast degree was greater because of uptake increase in lesion and uptake decrease in the normal body.

F-18-FDG Whole Body Scan using Gamma Camera equipped with Ultra High Energy Collimator in Cancer Patients: Comparison with FDG Coincidence PET (종양 환자에서 초고에너지(511 keV) 조준기를 이용한 전신 F-18-FDG 평면 영상: Coincidence 감마카메라 단층 촬영 영상과의 비교)

  • Pai, Moon-Sun;Park, Chan-H.;Joh, Chul-Woo;Yoon, Seok-Nam;Yang, Seung-Dae;Lim, Sang-Moo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.1
    • /
    • pp.65-75
    • /
    • 1999
  • Purpose: The aim of this study is to demonstrate the feasibility of 2-[fluorine-18] fluoro-2-deoxy-D-glucose (F-18-FDG) whole body scan (FDG W/B Scan) using dual-head gamma camera equipped with ultra high energy collimator in patients with various cancers, and compare the results with those of coincidence imaging. Materials and Methods: Phantom studies of planar imaging with ultra high energy and coincidence tomography (FDG CoDe PET) were performed. Fourteen patients with known or suspected malignancy were examined. F-18-FDG whole body scan was performed using dual-head gamma camera with high energy (511 keV) collimators and regional FDG CoDe PET immediately followed it Radiological, clinical follow up and histologic results were correlated with F-18-FDG findings. Results: Planar phantom study showed 13.1 mm spatial resolution at 10 cm with a sensitivity of 2638 cpm/MBq/ml. In coincidence PET, spatial resolution was 7.49 mm and sensitivity was 5351 cpm/MBq/ml. Eight out of 14 patients showed hypermetabolic sites in primary or metastatic tumors in FDG CoDe PET. The lesions showing no hypermetabolic uptake of FDG in both methods were all less than 1 cm except one lesion of 2 cm sized metastatic lymph node. The metastatic lymph nodes of positive FDG uptake were more than 1.5 cm in size or conglomerated lesions of lymph nodes less than 1cm in size. FDG W/B scan showed similar results but had additional false positive and false negative cases. FDG W/B scan could not visualize liver metastasis in one case that showed multiple metastatic sites in FDG CoDe PET. Conclusion: FDG W/B scan with specially designed collimators depicted some cancers and their metastatic sites, although it had a limitation in image quality compared to that of FDG CoDe PET. This study suggests that F-18-FDG positron imaging using dual-head gamma camera is feasible in oncology and helpful if it should be more available by regional distribution of FDG.

  • PDF

The evaluation of [F-18]FDG small animal PET as a functional neuroimaging technique with fear response experiment (공포반응실험을 통한 [F-18]FDG 소동물 양전자단층촬영 기능뇌영상 평가)

  • Jang, Dong-Pyo
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.1
    • /
    • pp.74-78
    • /
    • 2011
  • Although recent studies have shown the usibility of [F-18]FDG small animal Positron Emission Tommography (PET) as a functional neuroimaging technique in behavioural small animal study, researches showing the detection power of functional changes in the brain are still limited. Thus, in the study, we performed [F-18]FDG small animal PET neuroimaging in the well-established fear behavioural experiment. Twelve rats were exposed on cat for 30 minutes after the [F-18]FDG injection. As a result, the brain activity in bilateral amygdala areas significantly increased in the fear condition. In addition, the fear condition evoked the functional activities of hypothalamus, which seemed to be related to the response to stress. These clear localization of fear related brain regions may reflect that a functional neuroimaging technique using [F-18]FDG small animal PET has functional detectibility enough to be applied in small animal behavioral research.

Functional Neuroimaging in Epilepsy: FDG-PET and SPECT (간질에서의 기능적 뇌영상:양전자방출단층촬영과 단일광전자방출 단층촬영)

  • Lee, Sang-Kun;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.1
    • /
    • pp.24-33
    • /
    • 2003
  • Finding epileptogenic zone is the most important step for the successful epilepsy surgery. F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and single photon emission computed tomography (SPECT) can be used in the localization of epileptogenic foci. In medial temporal lobe epilepsy, the diagnostic sensitivity of FDG-PET and ictal SPECT is excellent. However, detection of hippocampal sclerosis by MRI is so certain that use of FDG-PET and ictal SPECT in medial temporal lobe epilepsy is limited for some occasions. In neocortical epilepsy, the sensitivities of FDG-PET or ictal SPECT are fair. However, FDG-PET and ictal SPECT can have a crucial role in the localization of epileptogenic foci for non-lesional neocortical epilepsy. Interpretation of FDG-PET has been recently advanced by voxel-based analysis and automatic volume of interest analysis based on a population template. Both analytical methods can aid the objective diagnosis of epileptogenic foci. Ictal SPECT was analyzed using subtraction methods and voxel-based analysis. Rapidity of injection of tracers, ictal EEG findings during injection of tracer, and repeated ictal SPECT were important technical issues of ictal SPECT. SPECT can also be used in the evaluation of validity of Wada test.

Association between Bone Marrow Hypermetabolism on 18F-Fluorodeoxyglucose Positron Emission Tomography and Response to Chemotherapy in Non-Small Cell Lung Cancer (비소세포폐암 환자의 양전자방출 단층촬영에서 골수 대사활성도의 항암화학요법에 대한 반응 예측)

  • Seol, Hee Yun;Mok, Jeong Ha;Yoon, Seong Hoon;Kim, Ji Eun;Kim, Ki Uk;Park, Hye-Kyung;Kim, Seong Jang;Kim, Yun Seong;Lee, Min Ki;Park, Soon Kew
    • Tuberculosis and Respiratory Diseases
    • /
    • v.66 no.1
    • /
    • pp.20-26
    • /
    • 2009
  • Background: $^{18}F$-Fluorodeoxyglucose positron emission tomography (FDG-PET) is widely used for the diagnosis and staging of non-small cell lung cancer (NSCLC). The aim of this study is to determine whether the bone marrow hypermetabolism seen on FDG-PET predicts a response to chemotherapy in patients with NSCLC. Methods: We evaluated the patients with advanced NSCLC and who were treated with combination chemotherapy. For determination of the standardized uptake value (SUV) of the bone marrow (BM SUV) on FDG-PET, regions of interest (ROIs) were manually drawn over the lumbar vertebrae (L1, 2, 3). ROIs were also drawn on a homogenous transaxial slice of the liver to obtain the bone marrow/ liver SUV ratio (BM/L SUV ratio). The response to chemotherapy was evaluated according to the Response Evaluation Criteria in Solid Tumor (RECIST) criteria after three cycles of chemotherapy. Results: Fifty-nine NSCLC patients were included in the study. Multivariate analysis was performed using a logistic regression model. The BM SUV and the BM/L SUV ratio on FDG-PET were not associated with a response to chemotherapy in NSCLC patients (p=0.142 and 0.978, respectively). Conclusion: The bone marrow hypermetabolism seen on FDG-PET can not predict a response to chemotherapy in NSCLC patients.

A Study on Preparation of 3'-$[^{18}F]$Fluoro-3'-deoxythymidine and Its Biodistribution in 9L Glioma Bearing Rats (3'-$[^{18}F]$Fluoro-3'-deoxythymidine의 합성과 9L glioma 세포를 이식한 래트에서의 체내동태에 관한 연구)

  • Shim, Ah-Young;Moon, Byung-Seok;Lee, Tae-Sup;Lee, Kyo-Chul;An, Gwang-Il;Yang, Seung-Dae;Yu, Kook-Hyun;Cheon, Gi-Jeong;Choi, Chang-Woon;Lim, Sang-Moo;Chun, Kwon-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.5
    • /
    • pp.263-270
    • /
    • 2006
  • Purpose: Several radioisotope-labeled thymidine derivatives such as $[^{11}C]$thymidine was developed to demonstrate cell proliferation in tumor. But it is difficult to track metabolism with $[^{11}C]$thymidine due to rapid in vivo degradation and its short physical half-life. 3'-$[^{18}F]$fluoro-3'-deoxythymidine ($[^{18}F]$FLT) was reported to have the longer half life of fluorine-18 and the lack of metabolic degradation in vivo. Here, we described the synthesis of the 3'-$[^{18}F]$fluoro-3'-deoxythymidine ($[^{18}F]$FLT) and compared with $([^{18}F]FET)\;and\;([^{18}F]FDG)$ in cultured 9L cell and obtained the biodistribution and PET image in 9L tumor hearing rats. Material and Methods: For the synthesis of $[^{18}F]$FLT, 3-N-tert-butoxycarbonyl-(5'-O-(4,4'-dimet hoxytriphenylmethyl)-2'-deoxy-3'-O-(4-nitrobenzenesulfonyl)-${\beta}$-D-threopentofuranosyl)thymine was used as a FLT precursor, on which the tert-butyloxycarbonyl group was introduced to protect N3-position and nitrobenzenesulfonyl group. Radiolabeling of nosyl substitued precursor with $^{18}F$ was performed in acetonitrile at $120^{\circ}C$ and deproteced with 0.5 N HCI. The cell uptake was measured in cultured 9L glioma cell. The biodistribution was evaluated in 9L tumor bearing rats after intravenous injection at 10 min, 30 min, 60 min and 120 min and obtained PET image 60 minutes after injection. Results: The radiochemical yield was about 20-30% and radiochemical purity was more than 95% after HPLC purification. Cellular uptake of $[^{18}F]$FLT was increased as time elapsed. At 120 min post-injection, the ratios of tumor/blood, tumor/muscle and tumor/brain were $1.61{\pm}0.34,\;1.70{\pm}0.30\;and\;9.33{\pm}2.22$, respectively. The 9L tumor was well visualized at 60 min post injection in PET image. Conclusion: The uptake of $[^{18}F]$FLT in tumor was higher than in normal brain and PET image of $[^{18}F]$FLT was acceptable. These results suggest the possibility of $[^{18}F]$FLT at an imaging agent for brain tumor.

Effect of Glucose Level on Brain FDG-PET Images (FDG를 이용한 Brain PET에서 Glucose Level이 영상에 미치는 영향)

  • Kim, In-Yeong;Lee, Yong-ki;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.275-280
    • /
    • 2017
  • In addition to tumors, normal tissues, such as the brain and myocardium can intake $^{18}F$-FDG, and the amount of $^{18}F$-FDG intake by normal tissues can be altered by the surrounding environment. Therefore, a process is necessary during which the contrasts of the tumor and normal tissues can be enhanced. Thus, this study examines the effects of glucose levels on FDG PET images of brain tissues, which features high glucose activity at all times, in small animals. Micro PET scan was performed on fourteen mice after injecting $^{18}F$-FDG. The images were compared in relation to fasting. The findings showed that the mean SUV value w as 0.84 higher in fasted mice than in non-fasted mice. During observation, the images from non-fasted mice showed high accumulation in organs other than the brain with increased surrounding noise. In addition, compared to the non-fasted mice, the fasted mice showed higher early intake and curve increase. The findings of this study suggest that fasting is important in assessing brain functions in brain PET using $^{18}F$-FDG. Additional studies to investigate whether caffeine levels and other preprocessing items have an impact on the acquired images would contribute to reducing radiation exposure in patients.

Usefulness of 18F-FDG PET/CT and Multiphase CT in the Differential Diagnosis of Hepatocellular Carcinoma and Combined Hepatocellular Carcinoma-Cholangiocarcinoma (간세포암종과 혼합성 간세포암종-담관암종에서 다위상 전산단층촬영술 소견과 18F-FDG PET/CT에서 섭취율 차이에 대한 분석 )

  • Jae Chun Park; Jung Gu Park;Gyoo-Sik Jung;Hee Kang;Sungmin Jun
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.6
    • /
    • pp.1424-1435
    • /
    • 2020
  • Purpose The purpose of this study was to evaluate the usefulness of multiphasic CT and 18F-fluorodeoxyglucose (FDG) PET/CT for the differentiation of combined hepatocellular carcinoma-cholangiocarcinoma (cHCC-CCA) from hepatocellular carcinoma (HCC). Materials and Methods From January 2007 to April 2016, 93 patients with pathologically confirmed HCC (n = 84) or cHCC-CCA (n = 9) underwent CT and PET/CT imaging. Contrast enhancement patterns were divided into three types based on the attenuation of the surrounding liver parenchyma: type I (early arterial enhancement with delayed washout), type II (early arterial enhancement without delayed washout), and type III (early hypovascular, infiltrative appearance, or peripheral rim enhancement). Results cHCC-CCAs (89%) had a higher PET/CT positive rate than did HCCs (61%), but the PET/CT positive rate did not differ significantly (p = 0.095). Among the 19 cases of the type II enhancement pattern, 3 (21%) of 14 HCCs and 4 (80%) of 5 cHCC-CCAs were PET/CT positive. cHCC-CCAs had a significantly higher PET/CT positive rate (p = 0.020) in the type II enhancement pattern. Conclusion The PET/CT positive rate of cHCC-CCA was significantly higher than that of HCC in lesions with a type II enhancement pattern. The 18F-FDG PET/CT can be useful for the differentiation of cHCC-CCA from HCC in lesions with a type II enhancement pattern on multiphasic CT.

Comparison of Paired and Unpaired Image-to-image Translation for 18F-FDG Delayed PET Generation (18F-FDG PET 지연영상 생성에 대한 딥러닝 이미지 생성 방법론 비교)

  • ALMASLAMANI MUATH;Kangsan Kim;Byung Hyun Byun;Sang-Keun Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.179-181
    • /
    • 2023
  • 본 논문에서는 GAN 기반의 영상 생성 방법론을 이용해 delayed PET 영상을 생성하는 연구를 수행하였다. PET은 양전자를 방출하는 방사성 동위원소를 표지한 방사성의약품의 체내 분포를 시각화함으로서 암 세포 진단에 이용되는 의료영상 기법이다. 하지만 PET의 스캔 과정에서 방사성의약품이 체내에 분포하는 데에 걸리는 시간이 오래 걸린다는 문제점이 존재한다. 따라서 본 연구에서는 방사성의약품이 충분히 분포되지 않은 상태에서 얻은 PET 영상을 통해 목표로 하는 충분히 시간이 지난 후에 얻은 PET 영상을 생성하는 모델을 GAN (generative adversarial network)에 기반한 image-to-image translation(I2I)를 통해 수행했다. 특히, 생성 전후의 영상 간의 영상 쌍을 고려한 paired I2I인 Pix2pix와 이를 고려하지 않은 unpaired I2I인 CycleGAN 두 가지의 방법론을 비교하였다. 연구 결과, Pix2pix에 기반해 생성한 delayed PET 영상이 CycleGAN을 통해 생성한 영상에 비해 영상 품질이 좋음을 확인했으며, 또한 실제 획득한 ground-truth delayed PET 영상과의 유사도 또한 더 높음을 확인할 수 있었다. 결과적으로, 딥러닝에 기반해 early PET을 통해 delayed PET을 생성할 수 있었으며, paired I2I를 적용할 경우 보다 높은 성능을 기대할 수 있었다. 이를 통해 PET 영상 획득 과정에서 방사성의약품의 체내 분포에 소요되는 시간을 딥러닝 모델을 통해 줄여 PET 이미징 과정의 시간적 비용을 절감하는 데에 크게 기여할 수 있을 것으로 기대된다.

  • PDF