DOI QR코드

DOI QR Code

공포반응실험을 통한 [F-18]FDG 소동물 양전자단층촬영 기능뇌영상 평가

The evaluation of [F-18]FDG small animal PET as a functional neuroimaging technique with fear response experiment

  • Jang, Dong-Pyo (Neuroscience Research institute, Gachon University of Medicine and Science)
  • 투고 : 2011.01.10
  • 심사 : 2011.02.02
  • 발행 : 2011.02.28

초록

Although recent studies have shown the usibility of [F-18]FDG small animal Positron Emission Tommography (PET) as a functional neuroimaging technique in behavioural small animal study, researches showing the detection power of functional changes in the brain are still limited. Thus, in the study, we performed [F-18]FDG small animal PET neuroimaging in the well-established fear behavioural experiment. Twelve rats were exposed on cat for 30 minutes after the [F-18]FDG injection. As a result, the brain activity in bilateral amygdala areas significantly increased in the fear condition. In addition, the fear condition evoked the functional activities of hypothalamus, which seemed to be related to the response to stress. These clear localization of fear related brain regions may reflect that a functional neuroimaging technique using [F-18]FDG small animal PET has functional detectibility enough to be applied in small animal behavioral research.

키워드

참고문헌

  1. F. Maestu, F. Quesney-Molina, T. Ortiz-Alonso, P. Campo, A. Fernandez-Lucas, and C. Amo, "Cognition and neural networks, a new perspective based on functional neuroimaging," Rev Neurol, vol. 37, pp. 962-6, 2003.
  2. S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle, and K. Ugurbil, "Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging," Proc Natl Acad Sci USA, vol. 89, pp. 5951-5, 1992. https://doi.org/10.1073/pnas.89.13.5951
  3. A. Van der Linden, N. Van Camp, P. Ramos-Cabrer, and M. Hoehn, "Current status of functional MRI on small animals: application to physiology, pathophysiology, and cognition," NMR Biomed, vol. 20, pp. 522-45, 2007. https://doi.org/10.1002/nbm.1131
  4. R. R. Peeters, I. Tindemans, E. De Schutter, and A. Van der Linden, "Comparing BOLD fMRI signal changes in the awake and anesthetized rat during electrical forepaw stimulation," Magn Reson Imaging, vol. 19, pp. 821-6, 2001. https://doi.org/10.1016/S0730-725X(01)00391-5
  5. D. P. Jang, S. H. Lee, S. Y. Lee, C. W. Park, Z. H. Cho, and Y. B. Kim, "Neural responses of rats in the forced swimming test [F-18]FDG micro PET study," Behav Brain Res, vol. 203, pp. 43-47, 2009. https://doi.org/10.1016/j.bbr.2009.04.020
  6. D. P. Jang, S. H. Lee, C. W. Park, S. Y. Lee, Y. B. Kim, and Z. H. Cho, "Effects of fluoxetine on the rat brain in the forced swimming test: a [F-18]FDG micro-PET imaging study," Neurosci Lett, vol. 451, pp. 60-64, 2009. https://doi.org/10.1016/j.neulet.2008.12.024
  7. J. S. Kim, J. S. Lee, K. C. Im, S. J. Kim, S. Y. Kim, D. S. Lee, and D. H. Moon, "Performance measurement of the microPET focus 120 scanner," J Nucl Med, vol. 48, pp. 1527-35, 2007. https://doi.org/10.2967/jnumed.107.040550
  8. J. LeDoux, "The emotional brain, fear, and the amygdala," Cell Mol Neurobiol, vol. 23, pp. 727-38, 2003. https://doi.org/10.1023/A:1025048802629
  9. J. S. Kim, J. S. Lee, M-H Park, H. Kang, J. J. Lee, K. C. Im, D. H. Moon, S. M. Lim, S. H. Oh, D. S. Lee, "Assessment of cerebral glucose metabolism in cat deafness model: strategies for improving the voxel-based statistical analysis for animal PET studies," Mol Imaging Biol. 2008, vol. 10(3), pp. 154-161. https://doi.org/10.1007/s11307-008-0140-9
  10. E. A. Phelps and J. E. LeDoux, "Contributions of the amygdala to emotion processing: from animal models to human behavior," Neuron, vol. 48, pp. 175-87, 2005. https://doi.org/10.1016/j.neuron.2005.09.025
  11. W. K. Berg and M. Davis, "Associative learning modifies startle reflexes at the lateral lemniscus," Behav Neurosci, vol. 99, pp. 191-9, 1985. https://doi.org/10.1037/0735-7044.99.2.191
  12. K. K. Sung, D. P. Jang, S. Lee, M. Kim, S. Y. Lee, Y. B. Kim, C. W. Park, and Z. H. Cho, "Neural responses in rat brain during acute immobilization stress: a [F-18]FDG micro PET imaging study," Neuroimage, vol. 44, pp. 1074-1080, 2009. https://doi.org/10.1016/j.neuroimage.2008.09.032
  13. P. Schweinhardt, P. Fransson, L. Olson, C. Spenger, J. L. Andersson, "a template for spatial normalisation of MR images of the rat brain," J Neurosci. Methods, vol. 129, pp. 105-113, 2003. https://doi.org/10.1016/S0165-0270(03)00192-4
  14. B. J. Fueger. J. Czernin, I. Hilderbrandt, C. Tran, B. S. Halpern, D. Stout, M. E. Phelps, and W. A. Weber, "Impact of animal handling on the results of 18f-FDG Pet studies in mice," J. Nucl. Med, vol. 47, pp. 999-1006, 2006.
  15. A. Valles, O. Marti, and A. Armario, "Long-term effects of a single exposure to immobilization: a c-fos mRNA study of the response to the homotypic stressor in the rat brain," J. neurobiol, vol. 66, pp. 591-602, 2006. https://doi.org/10.1002/neu.20252
  16. M. F. Dallman, S. F. Akana, N. Levin, C. D. Walker, M. J. Bradbury, S. Suemaru, and K. S. Scribner, "Corticosteroids and the control of function in the hypothalamo-pituitary-adrenal (HPA) axis.," Ann. N.Y. Acad. Sci. vol. 746, pp. 22-31, 2004.