• Title/Summary/Keyword: $^{123}I$

Search Result 801, Processing Time 0.033 seconds

Biodistribution and Metabolism of I-123 Labelled Fatty Acid(I) : [I-123]15-(p-iodophenyl)pentadecanoic acid(IPPA) (I-123 표지 지방산의 체내 분포 및 대사(I) : [I-123]15-(p-iodophenyl)pentadecanoic acid(IPPA))

  • Chang, Young Soo;Lee, Dong Soo;Jeong, Jae Min;Suh, Yong-Sup;Chung, June-Key;Lee, Myung Chul;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.1
    • /
    • pp.50-60
    • /
    • 1998
  • I-123 labelled fatty acids are suitable for investigation of regional myocardial metabolism, so they are on the clinical trial. However, the precise properties of these materials are not characterized yet. We have synthesized phenylpentadecanoic acid and labeled this compound with I-123. The purpose of this study was to examine the stability, biodistribution, metabolism and SPECT imaging of [I-123]15-(p-iodophenyl)pentadecanoic acid(I-123-IPPA) that we made. The stability test of I-123-IPPA in serum of rat, mouse and human showed no free I-123 after 1 hour. In biodistribution study in mice for various time intervals after injection(5, 10, 15, 30, 60 minutes), uptake in myocardium was 14.5%ID/g(5 min), and 1.9%ID/heart(5 min), while uptake in muscles was 2.6%ID/g(5 min). Myocardium to blood ratio and myocardium to lung ratio increased for 5 min after injection and then decreased rapidly. Chromatographic data of rat blood and urine showed that little PPA was found in blood and urine at 15-20 min after injection. The myocardial I-123-IPPA SPECT images of a dog with myocardial infarction showed defects similar to those of Tc-99m-MIBI and F-18-FDG. These data suggest that I-123-IPPA is quite stable in vitro and shows favorable biodistribution in mice. SPECT imaging with I-123-IPPA demonstrated infarct zone as photon defect in dog model of myocardial infarction. I-123-IPPA may be used for the evaluation of fatty acid metabolism in clinical trials in Korea.

  • PDF

A Study on the Synthesis, Labeling and Its Biodistribution of Estradiol Derivatives (에스트라디올 유도체의 합성, 표지 및 체내동태에 관한 연구)

  • Kim, Sang-Wook;Yang, Seung-Dae;Suh, Yong-Sup;Chun, Kwon-Soo;Ahn, Soon-Hyuk;Lim, Soo-Jung;Choi, Chang-Woon;Lim, Sang-Moo;Kim, Young-Soon;Yu, Kook-Hyun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.5
    • /
    • pp.403-409
    • /
    • 2000
  • Objectives: Due to the heterogeneous receptor distribution and changes of receptor status over time, the biochemical measurement of estrogen receptor status of biopsy specimens is not sufficient to diagnose breast cancer. As a result, I-123 labeled estradiols have been applied for the diagnosis. The purpose of this study was to develop a suitable radioligand for imaging estrogen receptor-positive human breast tumors. Methods: Among the various estradiol derivatives, $17{\alpha}-[^{123}I]$iodovinyl estradiol ($[^{123}I]$IVE) has been prepared from $17{\alpha}$-ethynyl estradiol. Labeling of $E-17{\alpha}-[^{123}I]$iodovinyl estradiol (E-$[^{123}I]$IVE) was carried out using peracetic acid with $[^{123}I]NaI\;and\;Z-[^{123}I]IVE$ labelling was archived using chloamine-T/HCl solution with $[^{123}I]$NaI. Labeling yield was determined by silica thin-layer chromatography (TLC) and radiochemical purity was measured by high performance liquid chromatography (HPLC). The biodistribution of E-$[^{123}I]$IVE was measured in immature female rats at 60 min, 120 min and 300 min after injection. Results: The labeling yield of two isomers was 92% and 94% ($E-[^{123}I]IVE\;and\;Z-[^{123}I]IVE$, respectively). The radiochemical purity was more than 98% after purification. The highest uptake was observed at 120 min in uterus (3.11% ID/g for E-$[^{123}I]$IVE). Conclusion: These results suggest the possibility of using E-$[^{123}I]$IVE as an imaging agent for the evaluation of the evaluation of the presence of estrogen receptor in patients with breast cancer.

  • PDF

Collimator Selection in Nuclear Medicine Imaging Using I-123 Generated by Te-124 Reaction (Te-124 Target로 생산된 I-123 SPECT 영상에서의 조준기 선택)

  • Kim, Hee-Joung;Son, Hye-Kyung;Bong, Joung-Kyun;Nam, Ki-Pyo;Lee, Hee-Kyung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.3
    • /
    • pp.372-378
    • /
    • 1996
  • In the case of $^{123}I$ from the $^{124}Te$(p,2n)reaction, the radionuclidic impurity is the high-energy gamma-emitting $^{124}I$, which interferes greatly with nuclear medicine images. The choice of a collimator can affect the quality of clinical SPECT images of [I-123]MIBG, [I-123] ${\beta}$-CIT, or [I-123]IPT. The tradeoffs that two different collimators make among spatial resolution, sensitivity, and scatter were studied by imaging a line source at 5cm, 10cm, 15cm distance using a number of plexiglass sheets between source and collimator, petri dish, two-dimensional Hoffman brain phantom, Jaszczak phantom, and three-dimensional Hoffman brain phantom after filling with $^{123}I$. (FWHM, FWTM, Sensitivity) for low-energy ultrahigh-resolution parallel - hole (LEUHRP) collimator and medium- energy general - purpose (MEGP) collimator were measured as (9.27mm, 61.27mm, $129CPM/{\mu}Ci$) and (10.53mm, 23.17mm, $105CPM/{\mu}Ci$), respectively. The image quality of two-dimensional Hoffman brain phantom with LEUHRP looked better than the one with MEGP. However, the image quality of Jaszczak phantom and three-dimensional Hoffman brain phantom with LEUHRP looked much worse than the one with MEGP because of scatter contributions in three-dimensional imaging situation. The results suggest that the MEGP is preferable to LEUHRP for three-dimensional imaging studies of [I-123]MIBG, [I-123] ${\beta}$-CIT, or [I-123]IPT.

  • PDF

SPECT Imaging of Dopamine Transporter with $[^{123}I]{\beta}$-CIT: A Potential Clinical Tool in Parkinson's Disease (파킨슨병에서 $[^{123}I]{\beta}$-CIT SPECT를 이용한 도파민 운반체 영상)

  • Kim, Sang-Eun;Lee, Won-Yong;Chi, Dae-Yoon;Choe, Yearn-Seong;Lee, Kyung-Han;Choi, Yong;Oh, Seung-Jun;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.1
    • /
    • pp.19-34
    • /
    • 1996
  • [ $[^{123}I]{\beta}$ ]-CIT [$2{\beta}$-carbomethoxy-$3{\beta}$-(4-iodophenyl)tropane]는 도파민 운반체 (dopamine transporter)에 특이결합하며 $[^{123}I]{\beta}$-CIT의 도파민 운반체 결합정도는 파킨슨병에서 도파민 뉴우런의 변성정도를 반영하는 것으로 제안되어 왔다. 이 연구의 주요 목적은 파킨슨병 환자에서 $[^{123}I]{\beta}$-CIT SPECT를 이용하여 측정된 $[^{123}I]{\beta}$-CIT의 선조체 결합지표들이 질병의 임상적 진행정도를 반영하는지를 검토하고, 간편화된 조직방사능비가 $[^{123}I]{\beta}$-CIT의 결합정도를 나타내는 정량적 지표로 이용될 수 있는지를 검증하는 것이었다. 파킨슨병 환자 30명($59{\pm}9$세, 평균${\pm}$표준편차: Hoehn-Yahr stage 1-3)과 정상인 6명 ($58{\pm}5$세)을 대상으로 $[^{123}I]{\beta}$-CIT SPECT 영상을 얻었다. $[^{123}I]{\beta}$-CIT 선조체 결합의 정량적 지표로서 (선조체 방사능-소뇌방사능)/소뇌방사능 비(specific binding ratio, SBR)와 추적자역학모델을 이용하여 측정한 선조체 결합능(binding potential)($k_3/k_4$)을 구하였다. 파킨슨병 환자에서 $[^{123}I]{\beta}$-CIT의 선조체 결합역학은 정상인에 비하여 현저하게 느렸으며 그 결합지표들은 정상인에 비하여 뚜렷하게 낮았다. 한편, 편측파킨슨병 환자에서 $[^{123}I]{\beta}$-CIT 결합은 증상 반대쪽 선조체 뿐만 아니라 같은 쪽 선조체에서도 정상인에 비해 유의하게 감소되어 있었다. 파킨슨병 환자에서 $[^{123}I]{\beta}$-CIT 투여 후 24시간의 선조체 SBR 및 최대 SBR, 선조체 결합능은 모두, 유병기간, Hoehn-Yahr stage, UPDRS(Unified Parkinson's Disease Rating Scale) 총점, UPDRS 운동점수, UPDRS 일상활동점수와 유의한 상관관계를 나타내었다. 24시간 선조체 SBR과 최대 SBR은 선조체 결합능과 우수한 상관관계를 보였다. 이상의 결과로부터 $[^{123}I]{\beta}$-CIT의 선조체 결합은 파킨슨병의 진행정도를 나타내는 지표로 이용될 수 있다. 또 $[^{123}I]{\beta}$-CIT 투여 후 24시간 영상으로부터 얻은 간편화된 조직방사능 비는 $[^{123}I]{\beta}$-CIT의 결합정도를 정량적으로 반영한다. $[^{123}I]{\beta}$-CIT SPECT는 파킨슨병의 조기진단 및 진행 추적에 임상적으로 유용할 것으로 판단된다.

  • PDF

In Vivo Image and Biodistribution of $^{123}I$-15-(p-iodophenyl)-3-R, S-methylpentadecanoic acid (BMIPP) in Liposarcoma Bearing Nude Mice (지방육종형성 동물모델에서 $^{123}I$-15-(p-iodophenyl)-3-R, S-methylpentadecanoic acid (BMIPP)의 생체분포와 생체영상)

  • Lee, Tae-Sup;Suh, Yong-Sup;Choi, Chang-Woon;Woo, Kwang-Sun;Chung, Wee-Sup;Lim, Soo-Jung;Lim, Sang-Moo;Awh, Ok-Doo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.5
    • /
    • pp.324-333
    • /
    • 2001
  • Purpose: $^{123}I$-labeled fatty acids have been used in the evaluation of regional myocardial energy metabolism. This study aimed to evaluate the usefulness of $^{123}I$-BMIPP as a liposarcoma-imaging agent. Materials and Methods: We compared in vitro uptakes between liposarcoma(SW872) and glioma(9L) cell lines, and examined biodistribution and in vivo images of $^{123}I$-BMIPP in liposarcoma-bearing nude mice. Cold-BMIPP was labeled with $^{123}I\;using\;Cu^{2+}$ as catalyst. After purification by Sep-pak, radiochemical purity was determined by TLC. We compared cellular uptake between glioma and liposarcoma after incubation of 5, 10, 15, 30, 60, 120, and 180 mins with culture medium containing $^{123}I$-BMIPP. The difference in biodistribution was determined between non-feeding (water only) group for 18 hr and feeding group in normal mice (n=6/group) at 0.5, 2, and 24 hr. In liposarcoma-hearing nude mice model, liposarcoma, SW872, ceil lines were injected subcutaneously into the felt thigh of nude mice. The biodistribution of $^{123}I$-BMIPP was evaluated at 0.5, 2, and 24 hr (n:5 / group) and in vivo Image of $^{123}I$-BMIPP was obtained with gamma camera at 2 and 24 hr in liposarcoma-hearing nude mice. Results: Radiolabeling yield and radiochemical purity were 95% and above 99%, respectively. SW872 cell line showed more increased uptake than 9L with 1.5 times at 180 mins. The clearance of $^{123}I$-BMIPP in various tissues was more delayed in the non-feeding group than in the feeding group, especially at delayed time (24 hr) in normal mice, and the major excreting organ was the gastrointestinal tract. In liposarcoma-bearing nude mice, tumor/blood ratio of $^{123}I$-BMIPP was 0.94, 0.75, and 1.38 and tumor/muscle ratio was 0.66, 1.53, and 1.11 at 0.5, 2, and 24hr, respectively. $^{123}I$-BMIPP was selectively localized in liposarcoma at 24 hr image. Conclusions: These results suggest that $^{123}I$-BMIPP can be used as a liposarcoma-imaging agent.

  • PDF

Distribution of $^{123}I,\;^{99m}Tc-Human$ Polyclonal Nonspecific IgG and $^{67}Ga-Citrate$ in Abscess bearing Mice ($^{123}I,\;^{99m}Tc$ 사람 비특이 IgG 및 $^{67}Ga-Citrate$의 실험동물에서 염증병소 섭취율의 비교)

  • Lim, Sang-Moo;Woo, Kwang-Sun;Chung, Wee-Sup;Awh, Ok-Doo;Seo, Yong-Sup;Lee, Jong-Doo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.26 no.1
    • /
    • pp.116-123
    • /
    • 1992
  • $^{123}I$ has ideal half life of 13 hours, suitable 159 keV gamma energy for imaging, and easy labeling methods. In Korea Cancer Center Hospital, $^{123}I$ has been produced by MC-50 cyclotron. The purpose of this study is looking for good labeling condition of $^{123}I$ and $^{99m}Tc$ to nonspecific human polyclonal IgG, and comparing these with $^{67}Ga-citrate$ in the abscess bearing mice. Human polyclonal nonspecific IgG was labeled with 0.2 M phosphate buffer added $^{123}I$ by chloramine T method. Human polyclonat nonspecific IgG was labeled with $^{99m}Tc-gluconate$ after activation with $\beta-mercaptoethanol$. In the abscess bearing mice, the radioactivity in the abscess was higher in 24 hours than 6 hours after injection. In the abscess, $^{123}I$ nonspecific IgG had higher uptake than $^{99m}Tc-IgG\;or\;^{67}Ga-citrate$. There was no significant difference in absecess uptake of $^{123}I-IgG$ among 24, 72, 120 hours abscess age. Further clinical researches with $^{123}I-nonspecific$ IgG, and other immunoscintigraphies using $^{123}I$ are expected.

  • PDF

The Effects of Dead Time and Its Correction Methods for Thyroid Prode using $^{99m}Tc$, $^{123}I$, $^{131}I$ ($^{99m}Tc$, $^{123}I$, $^{131}I$을 이용한 갑상선 탐침의 계수 불능시간영향의 특성과 그의 보정 방법에 관한 연구)

  • 손혜경;김희중;나상균;이희경
    • Progress in Medical Physics
    • /
    • v.7 no.1
    • /
    • pp.79-89
    • /
    • 1996
  • The purpose of this study was to examine the dead time effects and derive the correction factor. Using the thyroid probe and lucite cylindrical phantom, $^{99m}Tc$ 10.50mCi and $^{123}I$ 2.08mCi were counted with medical spectrometer at intervals of 2 hours for 43hrs and 79 hours. respectively. $^{123}I$ 2.06mCi was counted at intervals of 6 hours for 910 hours. To measure the starting point of dead time effect, the radioactivity was measured with dose calibrator in each time. The dead time effects started at about 0.80mCi at all distances for $^{99m}Tc$, and about 1.00mCi for $^{123}I$. The radioactivity corresponding to 20% counts loss is 1.29(center), 1.28(2cm), 1.31(4cm), 1.13(6cm)mCi for $^{99m}Tc$ and 1.39mCi for $^{123}I$. The correction factors for 2mCi of radioactivity as an example were 1.52(center), 1.52(2cm), 1.50(4cm), 1.58(6cm) for $^{99m}Tc$ and 1.58 for $^{123}I$.

  • PDF

Clinical Application of I-123 MIBG Cardiac Imaging (I-123 MIBG Cardiac SPECT의 임상적 적응증)

  • Kang, Do-Young
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.5
    • /
    • pp.331-337
    • /
    • 2004
  • Cardiac neurotransmission imaging allows in vivo assessment of presynaptic reuptake, neurotransmitter storage and postsynaptic receptors. Among the various neurotransmitter, I-123 MIBG is most available and relatively well-established. Metaiodobenzylguanidine (MIBG) is an analogue of the false neurotransmitter guanethidine. It is taken up to adrenergic neurons by uptake-1 mechanism as same as norepinephrine. As tagged with I-123, it can be used to image sympathetic function in various organs including heart with planar or SPECT techniques. I-123 MIBG imaging has a unique advantage to evaluate myocardial neuronal activity in which the heart has no significant structural abnormality or even no functional derangement measured with other conventional examination. In patients with cardiomyopathy and heart failure, this imaging has most sensitive technique to predict prognosis and treatment response of betablocker or ACE inhibitor. In diabetic patients, it allow very early detection of autonomic neuropathy. In patients with dangerous arrhythmia such as ventricular tachycardia or fibrillation, MIBG imaging may be only an abnormal result among various exams. In patients with ischemic heart disease, sympathetic derangement may be used as the method of risk stratification. In heart transplanted patients, sympathetic reinnervation is well evaluated. Adriamycin-induced cardiotoxicity is detected earlier than ventricular dysfunction with sympathetic dysfunction. Neurodegenerative disorder such as Parkinson's disease or dementia with Lewy bodies has also cardiac sympathetic dysfunction. Noninvasive assessment of cardiac sympathetic nerve activity with I-123 MIBG imaging nay be improve understanding of the pathophysiology of cardiac disease and make a contribution to predict survival and therapy efficacy.

Evaluation of Sympathetic Innervation in Cardiomyopathy with $^{123}I-MIBG$ (심근병에서 $^{123}I-MIBG$ 영상을 이용한 교감신경기능의 평가)

  • Kim, Sun-Jung;Lee, Jong-Doo;Lee, Do-Yun;Park, Chang-Yoon;Ham, Jin-Kyung;Chung, Nam-Sik;Cho, Seung-Yun;Lee, Sung-Sook;Kim, Young-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.27 no.2
    • /
    • pp.195-202
    • /
    • 1993
  • $^{123}Iodine$-metaiodobenzylguanidine (MIBG) which is a norepinephrine analogue, can be used to evaluate the sympathetic innervation of the heart. In this study, cardiac imaging with $^{123}I-MIBG$ was performed in patients with 9 dilated cardiomyopathy, 2 ischemic cardiomyopathy and 1 acute myocardial infarction to evaluate the sympathetic nervous function. $^{123}I-MIBG$ imaging showed multifocal defects (8), diffuse defect (2), near non-visualization (2). The defects of MIBG scans were found to be larger and more severe on 4 hours image than 30 minutes. Heart to lung, heart to mediastinum ratios were decreased at 4 hours than those at 30 minutes. Measured LVEF values were not correlated with the severity of MIBG uptake. $^{99m}Tc-MIBI$ imaging was also performed in all patients to find the relationship with $^{123}I-MIBG$ scan. $^{99m}Tc-MIBI$ scan showed multifocal defects in 9 patients, diffuse defects in 1 patient and no defect in 2 patients. The defects are similar in size, severity and extent, but more larger and severe on $^{123}I-MIBG$ imaging. Therefore, cardiac $^{123}I-MIBG$ imaging is a useful method to evaluate the sympathetic nervous function in cardiomyopathy.

  • PDF

Differentiation of Parkinson's Disease and Essential Tremor on I-123 IPT(I-123-N-(3-iodopropen-2-yl)-$2{\beta}$-carbomethoxy- $3{\beta}$-(4-cholorophenyl) tropane) Brain SPECT (파킨슨병과 본태성 진전의 감별진단에서 I-123 IPT(I-123-N-(3-iodopropen-2-yl)-$2{\beta}$-carbomethoxy-$3{\beta}$-(4-cholorophenyl) tropane) 뇌 단일광전자방출 전산화단층촬영의 역할)

  • Pai, Moon-Sun;Choi, Tae-Hyun;Ahn, Sung-Min;Choi, Jai-Yong;Ryu, Won-Gee;Lee, Jae-Hoon;Ryu, Young-Hoon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.2
    • /
    • pp.100-106
    • /
    • 2009
  • Purpose: The study was to assess I-123-N-(3-iodopropen-2-yl)-2[beta]-carbomethoxy-3[beta]-(4-cholorophenyl) tropane(IPT) SPECT in differential diagnosis among early stage of Parkinson's disease(PD) and essential tremor(ET) and normal control(NL) groups quantitatively. Materials and Methods: I-123 IPT brain SPECT of 50 NL, 20 early PD, 30 advanced PD, and 20 ET were performed at 20 minutes and 2 hours. Specific/nonspecific binding of striatum was calculated by using right and left striatal specific to occipital non-specific uptake ratio(striatum-OCC/OCC). Results: Mean value of specific/nonspecific binding ratio was significantly different between advanced PD group and NL group. However, significant overlap of striatal specific/nonspecific binding ratio was observed between PD group and ET group. Bilateral striatal specific/nonspecific binding ratios were decreased in advanced PD. Lateralized differences in the striatal uptake of I-123 IPT correlated with asymmetry in clinical findings in PD group. Conclusion: I-123 IPT SPECT may be a useful method for the diagnosis of PD and objective evaluation of progress of clinical stages. Care should be made in the differential diagnosis of early stage of PD and other motor disturbances mimicking PD such as ET in view of significant overlap in striatal I-123 specific/nonspecific binding ratio.