파킨슨병과 본태성 진전의 감별진단에서 I-123 IPT(I-123-N-(3-iodopropen-2-yl)-$2{\beta}$-carbomethoxy-$3{\beta}$-(4-cholorophenyl) tropane) 뇌 단일광전자방출 전산화단층촬영의 역할

Differentiation of Parkinson's Disease and Essential Tremor on I-123 IPT(I-123-N-(3-iodopropen-2-yl)-$2{\beta}$-carbomethoxy- $3{\beta}$-(4-cholorophenyl) tropane) Brain SPECT

  • 배문선 (관동대학교 의과대학 핵의학과) ;
  • 최태현 (한국원자력의학원 핵의학과) ;
  • 안성민 (가천길대학 방사선과) ;
  • 최재용 (연세대학교 의과대학 핵의학과) ;
  • 류원기 (연세대학교 의과대학 핵의학과) ;
  • 이재훈 (연세대학교 의과대학 핵의학과) ;
  • 유영훈 (연세대학교 의과대학 핵의학과)
  • Pai, Moon-Sun (Department of Nuclear Medicine, Kwandong University College of Medicine) ;
  • Choi, Tae-Hyun (Department of Nuclear medicine, Korea Institute of Radiological and Medical Science) ;
  • Ahn, Sung-Min (Department of Diagnostic Radiology, Gachon University of Medicine and Science) ;
  • Choi, Jai-Yong (Department of Nuclear Medicine, Yonsei University College of Medicine) ;
  • Ryu, Won-Gee (Department of Nuclear Medicine, Yonsei University College of Medicine) ;
  • Lee, Jae-Hoon (Department of Nuclear Medicine, Yonsei University College of Medicine) ;
  • Ryu, Young-Hoon (Department of Nuclear Medicine, Yonsei University College of Medicine)
  • 발행 : 2009.04.30

초록

목적: 파킨슨병은 비교적 흔한 운동장애질환으로 흑질(substantia nigra)의 도파민성 신경세포와 해당되는 기저핵의 도파민 함유 신경말단의 퇴행성 변화에 의하여 선조체에서의 도파민 운반체 농도도 감소하는 것으로 알려져 있다. 본 연구는 I-123 IPT SPECT에서 선조체의 도파민 특이결합과 후두염 뇌피질의 비특이 결합비를 이용하여 초기 및 진행된 파킨슨병 환자군과 본태성 진전 등의 다른 운동장애 질환군, 정상 대조군에서 도파민 운반체 영상을 비교하였다. 대상 및 방법: 정상 대조군 50명과 초기 파킨슨병 환자군 20명, 진행된 파킨슨병 환자군 30명, 본태성 진전환자군 20명을 대상으로 I-123 IPT를 정맥 주사후 20분과 2시간 후에 SPECT 영상을 획득하고 재구성하였다. 후두염에 배후방사능 관심영역을 그리고 선조체의 I-123 IPT의 특이/비특이 결합비를 구하여 각 군간의 차이를 정량적 및 정성적으로 비교하여 보았다. 결과: 선조체의 I-123 IPT의 특이/비특이 결합비는 진행된 파킨슨병 환자군과 정상 대조군에서는 평균값의 차이가 유의하였다. 그러나 초기 파킨슨병 환자군과 본태성 진전 환자군 사이에는 특이/비특이 결합비가 중첩됨이 관찰되었다. 정상 대조군과 본태성 진전환자군에서는 2시간 영상이 20분 영상에 비하여 특이/비특이 결합비도 높게 나타났고 표준 편차도 적었다. 진행된 파킨슨병 환자에서는 20분 영상과 2 시간 영상의 특이/비특이 결합비는 차이가 없었고 그 값도 낮았다. 편측 파킨슨병 환자에서 I-123 IPT의 특이/비특이 결합비는 증상이 나타난 반대측 선조체뿐만 아니라 같은쪽 선조체에서도 감소되어 있었다. 초기 파킨슨 환자20명 중 편측 증상을 보인 7명의 환자에서 I-123 IPT SPECT상의 좌우측 선조체간의 특이/비특이 결합비 간의 차이를 이용한 편측화 결과는 임상 증상의 편측화와 일치하였다. 결론: I-123 IPT SPECT는 진행된 파킨슨병의 진단과 치료에 따른 임상경과 진행의 객관적인 지표로서의 역할을 할 수 있을 것으로 생각되며 임상 증상이 발현되기 전단계의 초기 파킨슨병의 진단이나 파킨슨병과 유사한 운동증상을 보일 수 있는 다른 운동질환군과의 감별진단에 있어서는 각 군간의 중첩되는 비율이 있으므로 적용에 신중을 기해야 하겠다.

Purpose: The study was to assess I-123-N-(3-iodopropen-2-yl)-2[beta]-carbomethoxy-3[beta]-(4-cholorophenyl) tropane(IPT) SPECT in differential diagnosis among early stage of Parkinson's disease(PD) and essential tremor(ET) and normal control(NL) groups quantitatively. Materials and Methods: I-123 IPT brain SPECT of 50 NL, 20 early PD, 30 advanced PD, and 20 ET were performed at 20 minutes and 2 hours. Specific/nonspecific binding of striatum was calculated by using right and left striatal specific to occipital non-specific uptake ratio(striatum-OCC/OCC). Results: Mean value of specific/nonspecific binding ratio was significantly different between advanced PD group and NL group. However, significant overlap of striatal specific/nonspecific binding ratio was observed between PD group and ET group. Bilateral striatal specific/nonspecific binding ratios were decreased in advanced PD. Lateralized differences in the striatal uptake of I-123 IPT correlated with asymmetry in clinical findings in PD group. Conclusion: I-123 IPT SPECT may be a useful method for the diagnosis of PD and objective evaluation of progress of clinical stages. Care should be made in the differential diagnosis of early stage of PD and other motor disturbances mimicking PD such as ET in view of significant overlap in striatal I-123 specific/nonspecific binding ratio.

키워드

참고문헌

  1. Bemheimer H, Birkmayer W, Homykiewicz O, Jellinger K, Seitelberger F. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 1973;20:415-55 https://doi.org/10.1016/0022-510X(73)90175-5
  2. Hornykiewicz O, Kish SJ. Biochemical physiology of Parkinson's disease. Arch Neuro 1987;45:19-23
  3. Kish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopaminergic loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications. N Engl J Med 1988;318:876-80 https://doi.org/10.1056/NEJM198804073181402
  4. Rinne JO, Laihinen A, Nagren K, Bergman J, Solin O, Haaparanta M, et al. PET demonstrates different behaviour of striatal dopamine D-1 and D-2 receptors in early Parkinson's disease. J Neurosci Res 1990;27:494-9 https://doi.org/10.1002/jnr.490270409
  5. Booij J, Tissingh G, Winogrodzka A, van Royen EA Imaging of the dopaminergic neurotransmission system using single-photon emission tomography and positron emission tomography in patients with parkinsonism. Eur J Nucl Med 1999;26:171-82 https://doi.org/10.1007/s002590050374
  6. Tatsch K, Schwarz J, Mozley PD, Linke R, Pogarell O, Oertel WH, et al. Relationship between clinical features of Parkinson's disease and presynaptic dopamine transporter binding assessed with [$^{123}$I]IPT and single-photon emission tomography. Eur J Nucl Med 1997;24:415-21 https://doi.org/10.1007/BF00881814
  7. Goto S, Hirano A, Matsumoto S. Subdivisional involvement of nigrostriatal loop in idiopathic Parkinson's disease and striatonigral degeneration. Ann Neurol 1989;26:766-70 https://doi.org/10.1002/ana.410260613
  8. Hirai M, Kitamura N, Hashimoto T, Nakai T, Mita T, Shirakawa O, et al. [$^{3}$H]GBR-12935 binding sites in human striatal membranes: binding characteristics and changes in parkinsonians and schizophrenics. Jpn J Pharmacol 1988;47:237-43 https://doi.org/10.1254/jjp.47.237
  9. Janowsky A, Vocci F, Berger P, Angel I, Zelnik N, Kleinman JE, et al. [$^{3}$H]GBR-12935 binding to the dopamine transporter is decreased in the caudate nucleus in Parkinson's disease. J Neurochem 1987;49:617-21 https://doi.org/10.1111/j.1471-4159.1987.tb02908.x
  10. Maloteaux JM, Vanisberg MA, Laterre C, Javoy-Agid F, Agid Y, Laduron PM [$^{3}$H]GBR 12935 binding to dopamine uptake sites: subcellular localization and reduction in Parkinson's disease and progressive supranuclear palsy. Eur J Pharmacol 1988;156:331-40 https://doi.org/10.1016/0014-2999(88)90278-6
  11. Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y. Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson's disease. Brain Res 1983;275:321-8 https://doi.org/10.1016/0006-8993(83)90993-9
  12. Ciliax BJ, Heilman C, Demchyshyn LL, Pristupa ZB, Ince E, Hersch SM, et al. The dopamine transporter: immunochemical characterization and localization in brain. J Neurosci 1995;15:1714-23
  13. Church WH, Justice JB Jr, Byrd LD. Extracellular dopamine in rat striatum following uptake inhibition by cocaine, nomifensine and benztropine. Eur J Pharmacol 1987;139:345-8 https://doi.org/10.1016/0014-2999(87)90592-9
  14. Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, Macgregor RR, et al. Mapping cocaine binding sites in human and baboon brain in vivo. Synapse 1989;4:371-7 https://doi.org/10.1002/syn.890040412
  15. Hurd YL, Ungerstedt U. Cocaine: an in vivo microdialysis evaluation of its acute action on dopamine transmission in rat striatum. Synapse 1989;3:48-54 https://doi.org/10.1002/syn.890030107
  16. Huang WS Lin SZ, Lin JC, Wey SP, Ting G, Liu RS. Evaluation of early-stage Parkinson's disease with 99mTc-TRODAT-1 imaging. J Nucl Med 2001;42:1303-8
  17. Kim HJ, Lim JH, Yang SO, Ryu JS, Choi YY, Lee MJ et al. I-123 IPT SPECT Dopamine Reuptake Site Imaging: Differences in Normal Controls and Parkinson's Patients by Semiquantitative analysis. Korean J Nuc Med 1996;30:35-46
  18. Kim HJ, Im JH, Yang SO, Moon DH, Ryu JS, Bong JK, et al. Imaging and quantitation of dopamine transporters with iodine-123-IPT in normal and Parkinson's disease subjects. J Nucl Med 1997;38:1703-11
  19. Im JH, Chung SJ, Kim JS, Lee MC. Differential patterns of dopamine transporter loss in the basal ganglia of progressive supranuclear palsy and Parkinson's disease: Analysis with [$^{123}I$]IPT single photon emission computed tomography. J Neurol Sciences 2008;244:103-9
  20. Eshuis SA, Jager PL, Maguire RP, Jonkman S, Dierckx RA, Leenders KL. Direct comparison of FP-CIT SPECT and F-DOPA PET in patients with Parkinson's disease and healthy controls. Eur J Nucl Med Mol Imaging. 2009;36;454-62 https://doi.org/10.1007/s00259-008-0989-5
  21. Marsden CD. Parkinson's disease. J Neurol Neurosurg Psychiatry 1994;57:672-81 https://doi.org/10.1136/jnnp.57.6.672
  22. Johnson KA, Davis KR, Buonanno FS, Brady TJ, Rosen TJ, Growdon JH. Comparison of magnetic resonance and Roentgen ray computed tomography in dementia. Arch Neurol 1987;44:1075-80 https://doi.org/10.1001/archneur.1987.00520220071020
  23. Kohira I. The use of magnetic resonance imaging (MRI) and single photon emission computing tomography (SPECT) for the differential diagnosis of Parkinson's disease and other neurodegenerative disorders presenting as parkinsonism. Nippon Binsho 1997;55:39-42
  24. Okada J, Peppard R, Calne DB. Comparison study of positron emission tomography, X-ray CT and MRI in parkinsonism with dementia. Nippon Igaku Hoshasen Gakkai Zasshi 1989;49:643-56
  25. Liu RS, Lin KN, Wang SJ, Shan DE, Fuh JL, Yeh SH, et al. Cognition and $^{99}m$Tc-HMPAO SPECT in Parkinson's disease. Nucl Med Commun 1992;13:744-8 https://doi.org/10.1097/00006231-199213100-00007
  26. Kim HJ, Bong JK, Lee HK. Comparison Studies of SPECT Dopamine Transporter Imaging and Noninvasive Quantification using Tc-99m TRODAT-1 and I-123 IPT. Korean J Nuc Med 1998;32:10-19
  27. Bao SY Wu JC, Lo WF, Fang P, Liu ZL, Tang J. Imaging of dopamine transporters with technetirun-99m TRODAT-1 and single photon emission computed tomography. J Neuroimaging 2000;10:200-3 https://doi.org/10.1111/jon2000104200
  28. Madras BK, Jones AG, Mahmood A, Zimmerman RE, Garada B, Holman BL, et al. Technepine: a high-affmity 99m-technetirun probe to label the dopamine transporter in brain by SPECT imaging. Synapse 1996;22:239-46 https://doi.org/10.1002/(SICI)1098-2396(199603)22:3<239::AID-SYN6>3.0.CO;2-D
  29. Mozley PD, Schneider JS, Acton PD, Plossl K, Stern MB, Siderowf A, et al. Binding of [$^{99m}$]TRODAT-1 to dopamine transporters in patients with Parkinson's disease and in healthy volunteers. J Nucl Med 2000;41:584-9
  30. Mozley PD, Kim HJ, Gur RC, Tatsch K, Muenz LR, McElgin WT, et al. lodine-123-IPT SPECT imaging of CNS dopamine transporters: nonlinear effects of normal aging on striatal uptake values. J Nucl Med 1996;37:1965-70
  31. Britton TC. Essential tremor and its variants. Curr Opin Neurol 1995;8:314-9 https://doi.org/10.1097/00019052-199508000-00012
  32. Brooks DJ, Ibanez V, Sawle GY, Playford ED, Quinn N, Mathias CJ, et al. Striatal D2 receptor status in patients with Parkinson's disease, strionigral degeneration and progressive supranuclear palsy, measured with $^{11}$C-raclopride and positron emission tomography. Ann Neurol 1992;31:184-92 https://doi.org/10.1002/ana.410310209
  33. Lee MS, Kim YD, Im JH, Kim HJ, Rinne JO, Bhatia KP. $^{123}$I_IPT brain SPECT study in essential tremor and Parkinson's disease. Neurology 1999;52:1422-6 https://doi.org/10.1212/WNL.52.7.1422