• Title/Summary/Keyword: $\alpha$-Arabinofuranosidase

Search Result 32, Processing Time 0.018 seconds

Purification and Characterization of an $\alpha$ -L-Arabinofuranosidase from Bacillus sp. DSNC 101 (Bacillus sp. DSNC 101이 생산하는 $\alpha$-L-Arabinofuranosidase의 정제 및 특성)

  • 조남철;진종언
    • The Korean Journal of Food And Nutrition
    • /
    • v.14 no.1
    • /
    • pp.65-68
    • /
    • 2001
  • ${\alpha}$-L-Arabinofuranosidase was purified from the culture supernatant of Bacillus sp. DSNC 101. The enzyme had a molecular weight of 56 kDa. Optimum temperature and pH for ${\alpha}$-L-arabinofuranosidase activity were 55$^{\circ}C$ and 7.0 respectively. The Michaelis constant(Km) and maximal reaction velo-city(Vmax) for p-nitrophenyl-${\alpha}$-L-arabinofuranoside were 1.0 mM and 113.6 U/mg protein, respe-ctively. ${\alpha}$-L-Arabinofuranosidase was completely inhibited by HgCl$_2$ and CuSO$_4$. The enzyme was spe-cific for the ${\alpha}$-linked arabinoside in the furanoside configuration. The enzyme was produced during growth on agricultural residue such as rice straw, but not during growth on spelt xylan, glucose or cellobiose.

  • PDF

Purification and characterzation of the $\alpha$-L-Arabinofuranosidase from Escherichia coli Cells Harboring the Recombinant Plasmid pKMG11 (재조합 균주 Escherichia coli가 생산하는 Bacillus stearothermophilus $\alpha$-L-Arabinofuranosidase의 정제 및 특성)

  • 엄수정;조쌍구;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.4
    • /
    • pp.446-453
    • /
    • 1995
  • $\alpha $-Arabinofuranosidase was produced by E. coli HB101 haboring the recombinant plasmid pKMG11 which contained the arfI gene of Bacillus stearothermophilus. The maximum production of the enzyme was observed when E. coli HB101 cells were grown at 37$\circ$C for 20 hours in the medium containing 0.5% arabinose, 1.0% tryptone, 0.5% yeast extract, and 1% NaCl. The $\ALPHA $-arabinofuranosidase produced was purified to homogeneity using a combination of 20-50% ammonium sulfate precipitation, DEAE-Sepharose CL-6B ion exchange column chromatography and Sepharose 6B-100 gel filtration. The purified enzyme was most active at 55$\circ$C and pH 6.5. The K$_{m}$ and V$_{max}$ values of the enzyme on $\rho $-nitrophenyl-$\alpha $-arabinofuranoside was determined to be 2.99 mM and 0.43 $\mu $mole/min (319.74 $\mu $mole/min/mg), respectively. The pI value was 4.5. The molecular weight of the native protein was estimated to be 289 kDa. The SDS-polyacrylamide gel clectrophoresis analysis suggested that the functional protein was a trimer of the 108 kDa identical subunits. The N-terminal amino acid sequence of the a-arabinofuranosidase was identified as X-Ser-Thr-Ala-Pro-Arg( \ulcorner )-Ala-Thr-Met-Val-Ile-Asp-X-Ala-Phe.

  • PDF

Molecular Colning and Ewpression of the $\alpha$-L-Arabinofuranosidase Gene of Bacillus stearothermophilus in Escherichia coli (Bacillus stearothermophilus로부터 $\alpha$-L-Arabinofuranosidase 유전자의 클로닝 및 Escherichia coli에서의 발현)

  • Eom, Soo-Jung;Kim, Hee-Sun;Cho, Ssang-Goo;Choi, Yong-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.6
    • /
    • pp.607-613
    • /
    • 1994
  • The Bacillus stearothermophilus arfI gene encoding a-arabinofuranosidase was isolated from the genomic library, cloned into pBR322, and subsequently transferred into the Escherichia coli HB101. The recombinant E. coli was selected from approximately 10,000 transformants screened by making use of its ability to produce a yellow pigment around the colony on the selective medium supplemented with p-nitrophenyl-$\alpha$-L-arabinofuranoside (pNPAf), a chromogenic substrate. The functional clone was found to harbor a recombinant plasmid, pKMG11 with an insertion of about 5 kb derived from the B. stearothermophilus chromosomal DNA. Identity of the arfI gene on the insert DNA was confirmed by a zymogram with 4-methylumbelliferyl-$\alpha$-L-arabinofuranoside as the enzyme substrate. The $\alpha$-arabinofuranosidase from the recombinant E. coli strain showed very high substrate specificity; the enzyme displayed high activity only with pNPAf among many other p- or $o$-nitrophenyl derivatives of several sugars, and acted only on arabinoxylan among various natural arabinose containing polysaccharides tested.

  • PDF

Synergic Effects among Endo-xylanase, $\beta$-Xylosidase, and $\alpha$-L-Arabinofuranosidase from Bacillus stearothermophilus

  • Suh, Jung Han;Ssang Goo Cho;Yong Jin Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.179-183
    • /
    • 1996
  • Synergism among endo-xylanase, $\beta$-xylosidase, and $\alpha$-L-arabinofuranosidase from Bacillus stearothermophilus upon xylan hydrolysis was investigated by using birchwood, oat spelt, and arabinoxylan as substrates. Endo-xylanase and $\beta$-xylosidase showed the cooperative action on all three substrates tested, revealing the fact that $\beta$-xylosidase assists endo-xylanase action in xylan hydrolysis by relieving the endproduct inhibition upon endo-xylanase conferred by xylooligomers. $\alpha$-L-Arabinofuranosidase also exhibited synergic effects with endo-xylanase and $\beta$-xylosidase on oat spelt and arabinoxylan, which contained significant amounts of arabinose side chains, whereas no synergism was detected on birchwood xylan which had only trace amounts of the side chain. Thus, the hydrolysis of xylan containing arabinose side chains required $\alpha$-L-arabinofuranosidase as well as endo-xylanase and $\beta$-xylosidase for the better hydrolysis of the substrates, and these enzymes work cooperatively in order to maximize the extent and rate of xylan hydrolysis.

  • PDF

The Enzymatic Pattern of Bifdobacterium sp. Int-57 Isolated from Korean Feces (한국인 분변으로부터 분리한 Bifidobacterium sp. Int-57의 효소 Pattern)

  • 박헌국;강동현;이계호;윤석환;이세경;지근억
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.6
    • /
    • pp.647-654
    • /
    • 1992
  • In order to study the physiological properties of the intestinal bacteria, we isolated the intestinal bacteria of Koreans and tested the enzymatic patterns. Isolated Bifidobacterium sp. Int-57 had the higher activity of $\alpha$-glucosidase, $\beta$-glucosidase, $\alpha$-galactosidase, $\beta$-galactosidase. $\beta$-xylosidase and $\alpha$-arabinofuranosidase than other intestinal microorganisms. The effect of the carbon sources on the production of each enzymes of Bijidobacterium sp. Int-57 was investigated. The most suitable carbon source for the production of $\beta$-glucosidase was maltose, for a-glucosidase cellobiose, for $\alpha$-galactosidase raffinose, for $\beta$-galactosidase lactose, and for $\beta$-xylosidase and $\alpha$-arabinofuranosidase xylose, respectively. In addition, we investigated the optimal conditions and pH stability of each crude enzymes. The optimal condition of a-glucosidase was pH 6.0 and $40^{\circ}C$. that of Jj-glucosidase pH 7.0 and 50oe, that of $\beta$-galactosidase pH 7.0 and $50^{\circ}C$, that of $\beta$-xylosidase pH 6.0 and $40^{\circ}C$ , and that of $\alpha$-arabinofuranosidase pH 5.0 and $50^{\circ}C$. respectively. a-Glucosidase was stable at pH 4.0-9.0. Jj-glucosidase at pH 4.0-7.0. $\beta$-galactosidase at pH 4.0-9.0, $\beta$-xylosidase at pH 4.0-6.0, and /3-arabinofuranosidase at pH 7.0-9.0, respectively.

  • PDF

Characterization of a Paenibacillus woosongensis ${\beta}$-Xylosidase/${\alpha}$-Arabinofuranosidase Produced by Recombinant Escherichia coli

  • Kim, Yeon-A;Yoon, Ki-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1711-1716
    • /
    • 2010
  • A gene encoding the ${\beta}$-xylosidase/${\alpha}$-arabinofuranosidase (XylC) of Paenibacillus woosongensis was cloned into Escherichia coli. This xylC gene consisted of 1,425 nucleotides, encoding a polypeptide of 474 amino acid residues. The deduced amino acid sequence exhibited an 80% similarity with those of both Clostridium stercorarium ${\beta}$-xylosidase/${\alpha}$-N-arabinosidase and Bacillus cellulosilyticus ${\alpha}$-arabinofuranosidase, belonging to the glycosyl hydrolase family 43. The structural gene was subcloned with a C-terminal His-tag into a pET23a(+) expression vector. The His-tagged XylC, purified from a cell-free extract of a recombinant E. coli BL21(DE3) Codon Plus carrying a xylC gene by affinity chromatography, was active on para-nitrophenyl-${\alpha}$-arabinofuranoside (pNPA) as well as para-nitrophenyl-${\beta}$-xylopyranoside (pNPX). However, the enzymatic activities for the substrates were somewhat incongruously influenced by reaction pHs and temperatures. The enzyme was also affected by various chemicals at different levels. SDS (5 mM) inhibited the enzymatic activity for pNPX, while enhancing the enzymatic activity for pNPA. Enzyme activity was also found to be inhibited by addition of pentose or hexose. The Michaelis constant and maximum velocity of the purified enzyme were determined for hydrolysis of pNPX and pNPA, respectively.

Detailed Mode of Action of Arabinan-Debranching α-ʟ-Arabinofuranosidase GH51 from Bacillus velezensis

  • Oh, Gyo Won;Kang, Yewon;Choi, Chang-Yun;Kang, So-Yeong;Kang, Jung-Hyun;Lee, Min-Jae;Han, Nam Soo;Kim, Tae-Jip
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.37-43
    • /
    • 2019
  • The gene encoding an ${\alpha}-{\text\tiny{L}}-arabinofuranosidase$ (BvAF) GH51 from Bacillus velezensis FZB42 was cloned and expressed in Escherichia coli. The corresponding open reading frame consists of 1,491 nucleotides which encode 496 amino acids with the molecular mass of 56.9 kDa. BvAF showed the highest activity against sugar beet (branched) arabinan in 50 mM sodium acetate buffer (pH 6.0) at $45^{\circ}C$. However, it could hardly hydrolyze debranched arabinan and arabinoxylans. The time-course hydrolyses of branched arabinan and arabinooligosaccharides (AOS) revealed that BvAF is a unique exo-hydrolase producing exclusively ${\text\tiny{L}}-arabinose$. BvAF could cleave ${\alpha}-(1,2)-$ and/or ${\alpha}-(1,3)-{\text\tiny{L}}-arabinofuranosidic$ linkages of the branched substrates to produce the debranched forms of arabinan and AOS. Although the excessive amount of BvAF could liberate ${\text\tiny{L}}-arabinose$ from linear AOS, it was extremely lower than that on branched AOS. In conclusion, BvAF is the arabinan-specific exo-acting ${\alpha}-{\text\tiny{L}}-arabinofuranosidase$ possessing high debranching activity towards ${\alpha}-(1,2)-$ and/or ${\alpha}-(1,3)-linked$ branches of arabinan, which can facilitate the successive degradation of arabinan by $endo-{\alpha}-(1,5)-{\text\tiny{L}}-arabinanase$.

Production of Ginsenoside Rd from Ginsenoside Rc by ${\alpha}-{\small{L}}$-Arabinofuranosidase from Caldicellulosiruptor saccharolyticus

  • Shin, Kyung-Chul;Lee, Gi-Woong;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.483-488
    • /
    • 2013
  • Ginsenoside Rd was produced from ginsenoside Rc using a thermostable recombinant ${\alpha}-{\small{L}}$-arabinofuranosidase from Caldicellulosiruptor saccharolyticus. The optimal reaction conditions for the production of ginsenoside Rd from Rc were pH 5.5, $80^{\circ}C$, 227 U enzyme/ml, and 8.0 g/l ginsenoside Rc in the presence of 30% (v/v) n-hexane. Under these conditions, the enzyme produced 7.0 g/l ginsenoside Rd after 30 min, with a molar yield of 100% and a productivity of 14 g $l^{-1}\;h^{-1}$. The conversion yield and productivity of ginsenoside Rd are the highest reported thus far among enzymatic transformations.

Cloning, Expression, and Characterization of a Thermostable GH51 ${\alpha}-\small{L}$-Arabinofuranosidase from Paenibacillus sp. DG-22

  • Lee, Sun Hwa;Lee, Yong-Eok
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.236-244
    • /
    • 2014
  • The gene encoding ${\alpha}-\small{L}$-arabinofuranosidase (AFase) from Paenibacillus sp. DG-22 was cloned, sequenced, and expressed in Escherichia coli. The AFase gene (abfA) comprises a 1,509 bp open reading frame encoding 502 amino acids with a molecular mass of 56,520 daltons. The deduced amino acid sequence of the gene shows that AbfA is an enzyme consisting of only a catalytic domain, and that the enzyme has significant similarity to AFases classified into the family 51 of the glycosyl hydrolases. abfA was subcloned into the pQE60 expression vector to fuse it with a six-histidine tag and the recombinant AFase (rAbfA) was purified to homogeneity. The specific activity of the recombinant enzyme was 96.7 U/mg protein. Determination of the apparent molecular mass by gel-filtration chromatography indicated that AbfA has a tetrameric structure. The optimal pH and temperature of the enzyme were 6.0 and $60^{\circ}C$, respectively. The enzyme activity was completely inhibited by 1 mM $HgCl_2$. rAbfA was active only towards p-nitrophephenyl ${\alpha}-\small{L}$-arabinofuranoside and exhibited $K_m$ and $V_{max}$ values of 3.5 mM and 306.1 U/mg, respectively. rAbfA showed a synergistic effect in combination with endoxylanase on the degradation of oat spelt xylan and wheat arabinoxylan.

Molecular Cloning and Expression of the $\beta$-Xylosidase Gene (xylB) of Bacillus stearothermophilus in Escherichia coli

  • Suh, Jung-Han;Eom, Soo-Jung;Cho, Ssang-Goo;Choi, Yong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.5
    • /
    • pp.331-335
    • /
    • 1996
  • The second $\beta$-Xylosidase gene (xylB) from Bacillus stearothermophilus was isolated from the genomic library, cloned into pBR322, and subsequently transferred into Escherichia coli HB101. Six out of 10, 000 transformants were selected from the selective LB medium supplemented with p-nitrophenyl-$\alpha$-L-arabinofuranoside (pNPAf) and ampicillin ($50\mu g$/ml) based on their ability to form a yellow ring around the colony. One of the clones was found to harbor the recombinant plasmid with 5.0 kb foreign DNA, which was identical to the $\alpha$-L-arabinofuranosidase gene (arfI) previously cloned in this lab, while the other five had 3.5 kb of the foreign DNA. Southern blotting experiments confirmed that the 3.5 kb insert DNA was from B. stearothermophilus chromosomal DNA. A zymogram with 4-methylumbelliferyl-$\alpha$-L-arabinofuranoside as the enzyme substrate revealed that the cloned gene product was one of the mutiple $\alpha$-L-arabinofuranosidases produced by B. stearothermophilus. Unlike the arfI gene product, the product of the gene on the insert DNA (xylB) showed an activity not only on pNPAf but also on oNPX suggesting that the cloned gene product could be a bifunctional enzyme having both $\alpha$-L-arabinofuranosidase and $\beta$-xylosidase activities.

  • PDF