Browse > Article
http://dx.doi.org/10.4014/jmb.1308.08078

Cloning, Expression, and Characterization of a Thermostable GH51 ${\alpha}-\small{L}$-Arabinofuranosidase from Paenibacillus sp. DG-22  

Lee, Sun Hwa (Department of Biotechnology, Dongguk University)
Lee, Yong-Eok (Department of Biotechnology, Dongguk University)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.2, 2014 , pp. 236-244 More about this Journal
Abstract
The gene encoding ${\alpha}-\small{L}$-arabinofuranosidase (AFase) from Paenibacillus sp. DG-22 was cloned, sequenced, and expressed in Escherichia coli. The AFase gene (abfA) comprises a 1,509 bp open reading frame encoding 502 amino acids with a molecular mass of 56,520 daltons. The deduced amino acid sequence of the gene shows that AbfA is an enzyme consisting of only a catalytic domain, and that the enzyme has significant similarity to AFases classified into the family 51 of the glycosyl hydrolases. abfA was subcloned into the pQE60 expression vector to fuse it with a six-histidine tag and the recombinant AFase (rAbfA) was purified to homogeneity. The specific activity of the recombinant enzyme was 96.7 U/mg protein. Determination of the apparent molecular mass by gel-filtration chromatography indicated that AbfA has a tetrameric structure. The optimal pH and temperature of the enzyme were 6.0 and $60^{\circ}C$, respectively. The enzyme activity was completely inhibited by 1 mM $HgCl_2$. rAbfA was active only towards p-nitrophephenyl ${\alpha}-\small{L}$-arabinofuranoside and exhibited $K_m$ and $V_{max}$ values of 3.5 mM and 306.1 U/mg, respectively. rAbfA showed a synergistic effect in combination with endoxylanase on the degradation of oat spelt xylan and wheat arabinoxylan.
Keywords
${\alpha}-\small{L}$-Arabinofuranosidase; Paenibacillus sp. DG-22; gene cloning and expression;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Petersen TN, Brunak S, Heijne G, Nielsen H. 2011. SignalP 4,0: discriminating signal peptides from transmembrane regions. Nat. Methods 8: 785-786.   DOI   ScienceOn
2 Raweesri P, Riangrungrojana P, Pinphanichakarn P. 2008. $\alpha$- L-Arabinofuranosidase from Streptomyces sp. PC22: purification, characterization and its synergistic action with xylanolytic enzymes in the degradation of xylan and agricultural residues. Bioresour. Technol. 99: 8981-8986.   DOI   ScienceOn
3 Saha BC. 2000. $\alpha$-L-Arabinofuranosidase: biochemistry, molecular biology and application in biotechnology. Biotechnol. Adv. 18: 403-423.   DOI   ScienceOn
4 Shi P, Chen X, Meng K, Huang H, Bai Y, Luo H, et al. 2013. Distinct actions by Paenibacillus sp. strain E18 $\alpha$-Larabinofuranosidases and xylanase in xylan degradation. Appl. Environ. Microbiol. 79: 1990-1995.   DOI   ScienceOn
5 Sievers F, Wilm A, Dineen DG, Gibson TJ, Karplus K, Li W, et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7: 539
6 Souza TACB, Santos CR, Souza AR, Oldiges DP, Ruller R, Prade RA, et al. 2011. Structure of a novel thermostable GH51 $\alpha$-L-arabinofuranosidase from Thermotoga petrophila RKU-1. Protein Sci. 20: 1632-1637.   DOI   ScienceOn
7 Sunna A, Antranikian G. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39-67.   DOI   ScienceOn
8 Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI   ScienceOn
9 Lee TH, Lee YE. 2007. Cloning, sequencing and expression of the gene encoding a thermostable $\beta$-xylosidase from Paenibacillus sp. DG-22. J. Life Sci. 17: 1197-1203.   DOI
10 Lee TH, L im P O, L ee YE. 2007 . Cloning, characterization, and expression of xylanase A gene from Paenibacillus sp. DG-22 in Escherichia coli. J. Microbiol. Biotechnol. 17: 29-36.
11 Lee YE. 2004. Isolation and characterization of thermostable xylanase producing Paenibacillus sp. DG-22. Kor. J. Microbiol. Biotechnol. 32: 22-28.
12 Lee YE, Lim PO. 2004. Purification and characterization of two thermostable xylanases from Paenibacillus sp. DG-22. J. Microbiol. Biotechnol. 14: 1014-1021.
13 Marmur J. 1961. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3: 208-218.   DOI
14 Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426-428.   DOI
15 Morana A, Paris O, Maurelli L, Rossi M, Cannio R. 2007. Gene cloning and expression in Escherichia coli of a bifunctional $\beta$-D-xylosidase/$\alpha$-L-arabinosidase from Sulfolobus solfataricus involved in xylan degradation. Extremophiles 11: 123-132.   DOI
16 Numan MT, Bhosle NB. 2006. $\alpha$-L-Arabinofuranosidase: the potential applications in biotechnology. J. Ind. Microbiol. Biotechnol. 33: 247-260.   DOI   ScienceOn
17 Paes G, Skov LK, O'Donohue MJ, Remond C, Kastrup JS, Gajhede M, Mirza O. 2008. The structure of the complex between a branched pentasaccharide and Thermobacillus xylanilyticus GH-51 arabinofuranosidase reveals xylan-binding determinants and induced fit. Biochemistry 47: 7441-7451.   DOI   ScienceOn
18 Canakei S, Belduz AO, Saha BC, Yasar A, Ayaz FA, Yayli N. 2007. Purification and characterization of a highly thermostable $\alpha$-L-arabinofuranosidase from Geobacillus caldoxylolyticus TK4. Appl. Microbiol. Biotechnol. 75: 813-820.   DOI
19 Debeche T, Cummings N, Connerton I, Debeire P, O'Donohue MJ. 2000. Genetic and biochemical characterization of a highly thermostable $\alpha$-L-arabinofuranosidase from Thermobacillus xylanilyticus. Appl. Environ. Microbiol. 66: 1734-1736.   DOI
20 Degrassi G, Vindigni A, Venturi V. 2003. Thermostable $\alpha$-arabinofuranosidase from xylanolytic Bacillus pumilus: purification and characterization. J. Biotechnol. 101: 69-79.   DOI   ScienceOn
21 Gilead S, Shoham Y. 1995. Purification and characterization of $\alpha$-L-arabinofuranosidase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol. 61: 170-174.
22 Kaji A. 1984. L-Arabinosidases. Adv. Carbohydr. Chem. Biochem. 42: 383-394.   DOI
23 Gouet P, Robert X, Courcelle E. 2003. ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 31: 3320- 3323.   DOI   ScienceOn
24 Henrissat B, Bairoch A. 1996. Updating the sequence-based classification of glycosyl hydrolases. Biochem. J. 316: 695-696.   DOI
25 Hovel K, Shallom D, Niefind K, Belakhov V, Shoham G, Baasov T, et al. 2003. Crystal structure and snapshots along the reaction pathway of a family 51 $\alpha$-L-arabinofuranosidase. EMBO J. 22: 4922-4932.   DOI
26 Knob A, Carmona EC. 2010. Purification and characterization of two extracellular xylanases from Penicillium sclerotiorum: a novel acidophilic xylanase. Appl. Biochem. Biotechnol. 162: 429-443.   DOI
27 Kulkarni N, Shendye A, Rao M. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23: 411-456.   DOI   ScienceOn
28 Taylor EJ, Smith NL, Turkenburg JP, D'Souza S, Gilbert HJ, Davies GJ. 2006. Structural insight into the ligand specificity of a thermostable family 51 arabinofuranosidase, Araf51, from Clostridium thermocellum. Biochem. J. 395: 31-37.   DOI   ScienceOn
29 Ward OP, Moo-Young M. 1989. Enzymatic degradation of cell wall and related plant polysaccharides. Crit. Rev. Biotechnol. 8: 237-274.   DOI   ScienceOn
30 Wiegel VM, Lorenz WW. 2000. Cloning, sequencing, and characterization of the bifunctional xylosidase-arabinosidase from the anaerobic thermophile Thermoanaerobacter ethanolicus. Gene 247: 137-143.   DOI
31 Alvira P, Negro MJ, Ballesteros M. 2011. Effect of endoxylanase and $\alpha$-L-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Bioresour. Technol. 102: 4552-4558.   DOI
32 Bradford M M. 1976. Arapid and s ensitive m ethod for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-256.   DOI   ScienceOn
33 Arti D, Park JM, Jung TY, Song HN, Jang MU, Han NS, et al. 2012. Structural analysis of $\alpha$-L-arabinofuranosidase from Thermotoga maritima reveals characteristics for thermostability and substrate specificity. J. Microbiol. Biotechnol. 22: 1724- 1730.   DOI
34 Bastawde KB. 1992. Xylan structure, microbial xylanases, and their mode of action. World J. Microbiol. Biotechnol. 8: 353-368.   DOI
35 Biely P. 1985. Microbial xylanolytic systems. Trends Biotechnol. 3: 286-290.   DOI   ScienceOn
36 Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.   DOI   ScienceOn
37 Pei J, Shao W. 2008. Purification and characterization of an extracellular $\alpha$-L-arabinosidase from a novel isolate Bacillus pumilus ARA and its over-expression in Escherichia coli. Appl. Microbiol. Biotechnol. 78: 115-121.   DOI