Browse > Article
http://dx.doi.org/10.4014/jmb.1807.11035

Detailed Mode of Action of Arabinan-Debranching α-ʟ-Arabinofuranosidase GH51 from Bacillus velezensis  

Oh, Gyo Won (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University)
Kang, Yewon (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University)
Choi, Chang-Yun (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University)
Kang, So-Yeong (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University)
Kang, Jung-Hyun (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University)
Lee, Min-Jae (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University)
Han, Nam Soo (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University)
Kim, Tae-Jip (Division of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.1, 2019 , pp. 37-43 More about this Journal
Abstract
The gene encoding an ${\alpha}-{\text\tiny{L}}-arabinofuranosidase$ (BvAF) GH51 from Bacillus velezensis FZB42 was cloned and expressed in Escherichia coli. The corresponding open reading frame consists of 1,491 nucleotides which encode 496 amino acids with the molecular mass of 56.9 kDa. BvAF showed the highest activity against sugar beet (branched) arabinan in 50 mM sodium acetate buffer (pH 6.0) at $45^{\circ}C$. However, it could hardly hydrolyze debranched arabinan and arabinoxylans. The time-course hydrolyses of branched arabinan and arabinooligosaccharides (AOS) revealed that BvAF is a unique exo-hydrolase producing exclusively ${\text\tiny{L}}-arabinose$. BvAF could cleave ${\alpha}-(1,2)-$ and/or ${\alpha}-(1,3)-{\text\tiny{L}}-arabinofuranosidic$ linkages of the branched substrates to produce the debranched forms of arabinan and AOS. Although the excessive amount of BvAF could liberate ${\text\tiny{L}}-arabinose$ from linear AOS, it was extremely lower than that on branched AOS. In conclusion, BvAF is the arabinan-specific exo-acting ${\alpha}-{\text\tiny{L}}-arabinofuranosidase$ possessing high debranching activity towards ${\alpha}-(1,2)-$ and/or ${\alpha}-(1,3)-linked$ branches of arabinan, which can facilitate the successive degradation of arabinan by $endo-{\alpha}-(1,5)-{\text\tiny{L}}-arabinanase$.
Keywords
Bacillus velezensis; ${\alpha}-{\text\tiny{L}}-arabinofuranosidase$; arabinan-debranching activity; mode of action;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kawaguchi H, Sasaki M, Vertes AA, Inui M, Yukawa H. 2009. Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum. Appl. Environ. Microbiol. 75: 3419-3429.   DOI
2 Leal TF, de Sa-Nogueira I. 2004. Purification, characterization and functional analysis of an endo-arabinanase (AbnA) from Bacillus subtilis. FEMS Microbiol. Lett. 241: 41-48.   DOI
3 Inacio JM, de Sa-Nogueira I. 2008. Characterization of abn2 (yxiA), encoding a Bacillus subtilis GH43 arabinanase, Abn2, and its role in arabino-polysaccharide degradation. J. Bacteriol. 190: 4272-4280.   DOI
4 Park JM, Han NS, Kim TJ. 2007. Rapid detection and isolation of known and putative ${\alpha}$-L-arabinofuranosidase genes using degenerate PCR primers. J. Microbiol. Biotechnol. 17: 481-489.
5 Park JM, Jang MU, Kang JH, Kim MJ, Lee SW, Song YB, et al. 2012. Detailed modes of action and biochemical characterization of endo-arabinanase from Bacillus licheniformis DSM13. J. Microbiol. 50: 1041-1046.   DOI
6 Miller GL. 1959. Use of dinitrosalicyclic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426-428.   DOI
7 Fan B, Blom J, Klenk HP, Borriss R. 2017. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an "Operational group B. amyloliquefaciens" within the B. subtilis species complex. Front. Microbiol. 8: 22.
8 Fan B, Wang C, Song X, Ding X, Wu L, Wu H, et al. 2018. Bacillus velezensis FZB42 in 2018: The Gram-positive model strain for plant growth promotion and biocontrol. Front. Microbiol. 9: 2491.   DOI
9 Chen L, Gu W, Xu HY, Yang GL, Shan XF, Chen G. 2018. Comparative genome analysis of Bacillus velezensis reveals a potential for degrading lignocellulosic biomass. 3 Biotech. 8: 253.   DOI
10 Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, et al. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25: 1007-1014.   DOI
11 Miyazaki K. 2005. Hyperthermophilic ${\alpha}$-L-arabinofuranosidase from Thermotoga maritima MSB8: molecular cloning, gene expression, and characterization of the recombinant protein. Extremophiles 9: 399-406.   DOI
12 Lim YR, Yeom SJ, Kim YS, Oh DK. 2011. Synergistic production of L-arabinose from arabinan by the combined use of thermostable endo- and exo-arabinanases from Caldicellulosiruptor saccharolyticus. Bioresour. Technol. 102: 4277-4280.   DOI
13 Dumbrepatil A, Park JM, Jung TY, Song HN, Jang MU, Han NS, et al. 2012. Structural analysis of ${\alpha}$-L-arabinofuranosidase from Thermotoga maritima reveals characteristics for thermostability and substrate specificity. J. Microbiol. Biotechnol. 22: 1724-1730.   DOI
14 Lim YR, Yoon RY, Seo ES, Kim YS, Park CS, Oh DK. 2010. Hydrolytic properties of a thermostable ${\alpha}$-L-arabinofuranosidase from Caldicellulosiruptor saccharolyticus. J. Appl. Microbiol. 109: 1188-1197.   DOI
15 Hizukuri S. 1999. Nutritional and physiological functions and uses of L-arabinose. J. Appl. Glycosci. 46: 159-165.   DOI
16 Seri K, Sanai K, Matsuo N, Kawakubo K, Xue C, Inoue S. 1996. L-Arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism 45: 1368-1374.   DOI
17 Grootaert C, Delcour JA, Courtin CM, Broekaert WF, Verstraete W, Van de Wiele T. 2007. Microbial metabolism and prebiotic potency of arabinoxylan oligosaccharides in the human intestine. Trends Food Sci. Technol. 18: 64-71.   DOI
18 Vigsnaes LK, Holck J, Meyer AS, Licht TR. 2011. In vitro fermentation of sugar beet arabino-oligosaccharides by fecal microbiota obtained from patients with ulcerative colitis to selectively stimulate the growth of Bifidobacterium spp. and Lactobacillus spp. Appl. Environ. Microbiol. 77: 8336-8344.   DOI
19 Moon JS, Shin SY, Choi HS, Joo W, Cho SK, Li L, et al. 2015. In vitro digestion and fermentation properties of linear sugar-beet arabinan and its oligosaccharides. Carbohydr. Polym. 131: 50-56.   DOI
20 Park JM, Jang MU, Oh GW, Lee EH, Kang JH, Song YB, et al. 2015. Synergistic action modes of arabinan degradation by exo- and endo-arabinosyl hydrolases. J. Microbiol. Biotechnol. 25: 227-233.   DOI
21 Saha BC. 2000. ${\alpha}$-L-Arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnol. Adv. 18: 403-423.   DOI
22 Numan MT, Bhosle NB. 2006. ${\alpha}$-L-Arabinofuranosidases: the potential applications in biotechnology. J. Ind. Microbiol. Biotechnol. 33: 247-260.   DOI
23 de Sa-Nogueira I, Nogueira TV, Soares S, de Lencastre H. 1997. The Bacillus subtilis L-arabinose (ara) operon: nucleotide sequence, genetic organization and expression. Microbiology 143: 957-969.   DOI
24 Wilkens C, Andersen S, Dumon C, Berrin JG, Svensson B. 2017. GH62 arabinofuranosidases: Structure, function and applications. Biotechnol. Adv. 35: 792-804.   DOI
25 Hovel K, Shallom D, Niefind K, Belakhov V, Shoham G, Baasov T, et al. 2003. Crystal structure and snapshots along the reaction pathway of a family 51 ${\alpha}$-L-arabinofuranosidase. EMBO J. 22: 4922-4932.   DOI
26 Fujimoto Z, Ichinose H, Maehara T, Honda M, Kitaoka M, Kaneko S. 2010. Crystal structure of an exo-1,5-${\alpha}$-L-arabinofuranosidase from Streptomyces avermitilis provides insights into the mechanism of substrate discrimination between exo- and endo-type enzymes in glycoside hydrolase family 43. J. Biol. Chem. 285: 34134-34143.   DOI
27 Inacio JM, Correia IL, de Sa-Nogueira I. 2008. Two distinct arabinofuranosidases contribute to arabino-oligosaccharide degradation in Bacillus subtilis. Microbiology 154: 2719-2729.   DOI
28 Shulami S, Raz-Pasteur A, Tabachnikov O, Gilead-Gropper S, Shner I, Shoham Y. 2011. The L-arabinan utilization system of Geobacillus stearothermophilus. J. Bacteriol. 193: 2838-2850.   DOI