Tin perovskite solar cells have attracted a lot of attention due to their potential to address the toxicity of lead, which is the biggest barrier to commercialization of perovskite solar cells. Unlike other lead-free perovskite, tin perovskite have a direct bandgap, which is suitable for use as light harvesting, and relatively good stability, which has led to a lot of attention. Since the first tin perovskite solar cell was reported in 2014, it has achieved an impressive power conversion efficiency of 14.81%. However, this efficiency is still low compared to that of lead perovskite solar cells, and the stability of tin perovskite solar cells is also an issue that needs to be addressed. In this review, we will discuss the basic properties of the tin atom in comparison to the lead atom, and then discuss the crystal structure, phase transition, and basic properties of tin perovskite. We will then discuss the advantages, applications, challenges, and strategies of tin perovskite, In particular, we will focus on how to prevent the oxidation of tin, which is arguably the biggest challenge for using tin perovskite solar cells. At the end, we summarize the key factors that need to be addressed for higher efficiency and stability, emphasizing what is needed to commercialize tin perovskite solar cells.