Over the past decades, an enormous amount of effort has been expended in laboratory and field studies on concrete durability estimation. The results of this research are still either widely scattered in the journal literature or mentioned briefly in the standard textbooks. Moreover, the theoretical approaches of deterioration mechanisms with a predictive character are limited to some complicated mathematical models not widespread in practice. A significant step forward could be the development of appropriate software for computer-based estimation of concrete service life, including reliable mathematical models and adequate experimental data. In the present work, the basis for the development of a computer estimation of the concrete service life is presented. After the definition of concrete mix design and structure characteristics, as well as the consideration regarding the environmental conditions where the structure will be found, the concrete service life can be reliably predicted using fundamental mathematical models that simulate the deterioration mechanisms. The prediction is focused on the basic deterioration phenomena of reinforced concrete, such as carbonation and chloride penetration, that initiate the reinforcing bars corrosion. Aspects on concrete strength and the production cost are also considered. Field observations and data collection from existing structures are compared with predictions of service life using the above model. A first attempt to develop a database of service lives of different types of reinforced concrete structure exposed to varying environments is finally included.