DOI QR코드

DOI QR Code

Validation of 3D crack propagation in plain concrete -Part II: Computational modeling and predictions of the PCT3D test

  • Gasser, T.Christian (Royal Institute of Technology (KTH), Department of Solid Mechanics)
  • Received : 2006.04.30
  • Accepted : 2007.02.05
  • Published : 2007.02.25

Abstract

The discrete crack-concept is applied to study the 3D propagation of tensile-dominated failure in plain concrete. To this end the Partition of Unity Finite Element Method (PUFEM) is utilized and the strong discontinuity approach is followed. A consistent linearized implementation of the PUFEM is combined with a predictor-corrector algorithm to track the crack path, which leads to a robust numerical description of concrete cracking. The proposed concept is applied to study concrete failure during the PCT3D test and the predicted numerical results are compared to experimental data. The proposed numerical concept provides a clear interface for constitutive models and allows an investigation of their impact on concrete cracking under 3D conditions, which is of significant scientific interests to interpret results from 3D experiments.

Keywords

References

  1. Batoz, J. and Dhatt, G. (1979), "Incremental displacement algorithms for nonlinear problems", Int. J. Numer. Meth. Eng., 14, 1262-1267. https://doi.org/10.1002/nme.1620140811
  2. Bazant, Z.P. (2002), "Concrete fracture models: Testing and practice", Eng. Fract. Mech., 69, 165-205. https://doi.org/10.1016/S0013-7944(01)00084-4
  3. Bazant, Z.P. and Pijaudier-Cabot, G. (1988), "Nonlocal continuum damage, localization instability and convergence", J. Appl. Mech., 55, 287-293. https://doi.org/10.1115/1.3173674
  4. Bigoni, D. and Zaccaria, D. (1994), "On the eigenvalues of the accustic tensor in elastoplasticity", Eur. J. Mech. A/Solids, 13, 621-638.
  5. Brokenshire, D.R. (1996), Torsional fracture tests, PhD thesis, Cardiff University, U.K.
  6. Coleman, B.D. and Noll, W. (1963), "The thermodynamics of elastic materials with heat conduction and viscosity", Arch. Rat. Mech. Anal., 13, 167-178. https://doi.org/10.1007/BF01262690
  7. Feist, C. and Hofstetter, G. (2006), "An embedded strong discontinuity model for cracking of plain concrete", Comput. Meth. Appl. Mech. Eng., 195(52), 7115-7138. https://doi.org/10.1016/j.cma.2005.01.028
  8. Feist, C. and Hofstetter, G. (2007), "Validation of 3d crack propagation in plain concrete Part I: Experimental investigation -the PCT3D test", Comput. Concrete., 4(1), 49-66. https://doi.org/10.12989/cac.2007.4.1.049
  9. Feist, C., W. Kerber, H. and Lehar, G.H. (2004), "A comparative study of numerical models for concrete cracking", in Proc. of European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS, Barcelona, P. Neittaanmki, T. Rossi, S. Korotov, E. Onate, J. Periaux, D. Knrzer (Eds).
  10. Gasser, T.C. and Holzapfel, G.A. (2003a), "Geometrically non-linear and consistently linearized embedded strong discontinuity models for 3D problems with an application to the dissection analysis of soft biological tissues", Comput. Meth. Appl. Mech. Eng., 192, 5059-5098. https://doi.org/10.1016/j.cma.2003.06.001
  11. Gasser, T.C. and Holzapfel, G.A. (2003b), "Necking phenomena of a ber-reinforced bar modeled by multisurface plasticity", in C. Miehe, ed., IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains, Proceedings of the IUTAM Symposium held in Stuttgart, Germany, 20-24 August 2001, Kluwer Academic Publishers, Dordrecht, pp. 211-220.
  12. Gasser, T. and Holzapfel, G. (2005), "Modeling 3D crack propagation in unreinfoced concrete using PUFEM", Comput. Meth. Appl. Mech. Eng., 194, 2859-2896. https://doi.org/10.1016/j.cma.2004.07.025
  13. Gasser, T. and Holzapfel, G. (2006), "3D crack propagation in unreinfoced concrete. A new smooth algorithm for tracking 3D crack surfaces", Comput. Meth. Appl. Mech. Eng., 195, 5198-5219. https://doi.org/10.1016/j.cma.2005.10.023
  14. Holzapfel, G.A. (2000), Nonlinear Solid Mechanics. A Continuum Approach for Engineering, John Wiley & Sons, Chichester.
  15. Jefferson, A.D. (2003a), "CRAFT -A plastic-damage-contact model for concrete. I. Model theory and thermodynamic considerations", Int. J. Solids Struct., 40, 5973-5999. https://doi.org/10.1016/S0020-7683(03)00390-1
  16. Jefferson, A.D. (2003b), "CRAFT -A plastic-damage-co,ntact model for concrete. II. Model implementation with implicit return-mapping algorithm and consistent tangent matrix", Int. J. Solid Struct. 40, 6001-6022. https://doi.org/10.1016/S0020-7683(03)00391-3
  17. Jirasek, M. (2000), "Comparative study on finite elements with embedded discontinuities", Comput. Meth. Appl. Mech. Eng., 188, 307-330. https://doi.org/10.1016/S0045-7825(99)00154-1
  18. Jirasek, M. and Belytschko, T. (2002), "Computational resolution of strong discontinuities", in Proc. World Congress on Computational Mechanics, WCCM V, H. Mang, F. Rammerstorfer and J. Eberhardsteiner (Eds), Vienna University of Technology, Austria.
  19. Kesler, C.E., Naus, D.J. and Lott, J.L. (1972), "Fracture mechanics -its applicability to concrete", in Proceedings of the International Conference on the Mechanical Behavior of Materials, The Society of Material Sciences, Kyoto 1971, pp. 113-124.
  20. Mandel, J. (1966), "Conditions de stabilie et postulat de Drucker", in J. Kravtchenko and P.M. Sirieys, eds, Rheology and Soil Mechanics, Berlin, Germany, pp. 58-68.
  21. de Borst, R. (1997), "Some recent developments in computational modelling of concrete fracture", Int. J. Fracture, 86, 5-36. https://doi.org/10.1023/A:1007360521465
  22. de Borst, R. (2001), "Some recent issues in computational failure mechanics", Int. J. Numer. Meth. Eng., 52, 63-95. https://doi.org/10.1002/nme.272
  23. Melenk, J. and Babu ka, I. (1996), "The partition of unity finite element method: Basic theory and applications", Comput. Meth. Appl. Mech. Eng., 139, 289-314. https://doi.org/10.1016/S0045-7825(96)01087-0
  24. Moes, N., Gravouil, A. and Belytschko, T. (2002), "Non-planar 3D crack growth by the extended finite element and level sets - Part I: Mechanical model", Int. J. Numer. Meth. Eng., 53, 2549-2568. https://doi.org/10.1002/nme.429
  25. Needleman, A. (1987), "A continuum model for void nucleation by inclusion debonding", J. Appl. Mech., 54, 525-531. https://doi.org/10.1115/1.3173064
  26. Needleman, A. (1990), "An analysis of decohesion along an imperfect interface", Int. J. Fracture, 42, 21-40. https://doi.org/10.1007/BF00018611
  27. Ogden, R.W. (1997), Non-linear Elastic Deformations, Dover, New York.
  28. Oliver, J. (2000), "On the discrete constitutive models induced by strong discontinuity kinematics and continuum constitutive equations", Int. J. Solids Struct. 37, 7207-7229. https://doi.org/10.1016/S0020-7683(00)00196-7
  29. Oliver, J., Huespe, A.E., Samaniego, E. and Chaves, E.W.V. (2002), "On strategies for tracking strong discontinuities in computational failure mechanics", in H.A. Mang, F.G. Rammerstorfer and J. Eberhardsteiner, eds, Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V), Vienna University of Technology, Vienna, Austria.
  30. Oliver, J., Huespe, A.E., Samaniego, E. and Chaves, E.W.V. (2004), "Continuum approach to the numerical simulation of material failure in concrete", Int. J. Numer. Anal. Meth. Geomech., 28, 609-632. https://doi.org/10.1002/nag.365
  31. Oliver, J., Huespe, A., Pulido, M. and Chaves, E. (2002), "From continuum mechanics to fracture mechanics: The strong discontinuity approach", Eng. Fract. Mech., 69, 113-136. https://doi.org/10.1016/S0013-7944(01)00060-1
  32. Ortiz, M. and Pandol, A. (1999), "Finite-deformation irreversible cohesive elements for three-dimensional crackpropagation analysis", Int. J. Numer. Meth. Eng., 44, 1267-1282. https://doi.org/10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
  33. Osher, S. and Sethina, J.A. (1988), "Fronts propagating with curvature dependening speed: Algorithms based on hamilton-jacobi formulations", J. Comput. Phys., 79, 12-49. https://doi.org/10.1016/0021-9991(88)90002-2
  34. Pivonka, P., O bolt, J., Lackner, R. and Mang, H.A. (2004), "Comparative studies of 3d constitutive models for concrete: application to mixed-mode fracture", Int. J. Numer. Meth. Eng., 60, 549-570. https://doi.org/10.1002/nme.975
  35. Reinhardt, H.W., Cornelissen, H.A.W. and Hordijk, D.A. (1986), "Tensile tests and failure analysis of concrete", J. Struct. Eng.-ASCE, 112, 2462-2477. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:11(2462)
  36. Rudnicki, J.W. and Rice, J.R. (1975), "Conditions for the localization of deformation in pressure-sensitive dilatant materials", J. Mech. Phys. Solids, 23, 371-394. https://doi.org/10.1016/0022-5096(75)90001-0
  37. Schoberl, J. (2002), NETGEN - A 3D tetrahedral mesh generator - Version 4.2, University Linz, Austria.
  38. Simone, A., Askes, H. and Sluys, L. (2004), "Incorrect initiation and propagation of failure in non-local and gradient-enhanced media", Int. J. Solids Struct., 41, 351-363. https://doi.org/10.1016/j.ijsolstr.2003.09.020
  39. Spencer, A.J.M. (1984), "Constitutive theory for strongly anisotropic solids", in A.J.M. Spencer, ed., Continuum Theory of the Mechanics of Fibre-Reinforced Composites, T. Christian Gasser Springer-Verlag, Wien, pp. 1-32. CISM Courses and Lectures No. 282, International Centre for Mechanical Sciences.
  40. Stolarska, M., Chopp, D.L., Moes, N. and Belytschko, T. (2001), "Modelling crack growth by level sets in the extended finite element method", Int. J. Numer. Meth. Eng., 51, 943-960. https://doi.org/10.1002/nme.201
  41. Taylor, R.L. (2000), FEAP - A Finite Element Analysis Program - Version 7.3, University of California at Berkeley.
  42. Tvergaard, V. and Hutchinson, J.W. (1992), "The relation between crack growth resistance and fracture process parameters in elastic-plastic solids", J. Mech. Phys. Solids, 40, 1377-1397. https://doi.org/10.1016/0022-5096(92)90020-3
  43. Varias, A.G., O'Dowd, N.P., Asaro, R.J. and Shih, C.F. (1990), "Failure of bimaterial interfaces", Materials Sci. Eng., A 126, 65-93. https://doi.org/10.1016/0921-5093(90)90114-I
  44. Wells, G.N., de Borst, R. and Sluys, L.J. (2002), "A consistent geometrically non-linear approach for delamination", Int. J. Numer. Meth. Eng., 54, 1333-1355. https://doi.org/10.1002/nme.462
  45. Wells, G.N. and Sluys, L.J. (2001), "Three-dimensional embedded discontinuity model for brittle fracture", Int. J. Solids Struct., 38, 897-913. https://doi.org/10.1016/S0020-7683(00)00029-9
  46. Wriggers, P. (2002), Computational Contact Mechanics, John Wiley & Sons, Chichester.

Cited by

  1. Towards the treatment of boundary conditions for global crack path tracking in three-dimensional brittle fracture vol.45, pp.1, 2009, https://doi.org/10.1007/s00466-009-0417-0
  2. Three-dimensional simulations of tensile cracks in geomaterials by coupling meshless and finite element method vol.39, pp.2, 2015, https://doi.org/10.1002/nag.2298
  3. A three dimensional augmented finite element for modeling arbitrary cracking in solids vol.197, pp.2, 2016, https://doi.org/10.1007/s10704-016-0072-3
  4. Review and enhancement of 3D concrete models for large-scale numerical simulations of concrete structures vol.37, pp.3, 2013, https://doi.org/10.1002/nag.1096
  5. Modeling three-dimensional crack propagation-A comparison of crack path tracking strategies vol.76, pp.9, 2008, https://doi.org/10.1002/nme.2353
  6. 3D modeling of arbitrary cracking in solids using augmented finite element method vol.160, 2017, https://doi.org/10.1016/j.compstruct.2016.10.061
  7. An embedded crack model for failure analysis of concrete solids vol.7, pp.4, 2007, https://doi.org/10.12989/cac.2010.7.4.331
  8. Size-effect of fracture parameters for crack propagation in concrete: a comparative study vol.9, pp.1, 2012, https://doi.org/10.12989/cac.2012.9.1.001
  9. Real-time comprehensive image processing system for detecting concrete bridges crack vol.23, pp.6, 2007, https://doi.org/10.12989/cac.2019.23.6.445
  10. Computer-aided approach for modelling of FG cylindrical shell sandwich with ring supports vol.25, pp.5, 2007, https://doi.org/10.12989/cac.2020.25.5.411