The research direction of the automobile industry worldwide is speeding up research to improve fuel efficiency through weight reduction as the weight of automobiles increases due to environmental problems, convenience demands, and safety problems. As a way to solve weight reduction, there is a method of improving mechanical properties by improving the development and manufacturing method of lightweight materials with replaceable mechanical properties. Therefore, research on the molding and processing technology of aluminum, which is a lightweight material, is being actively conducted. In this study, aluminum material was applied. By using Autoform S/W, a press forming analysis program, the blank holding force, mold die R, and bead restraint force were selected in three levels, respectively, and the results and optimization of formability and shape freezing were carried out. In this study, aluminum material was applied. By using Autoform S/W, a press molding analysis program, the blank holding force, mold die R, and bead restraint force were selected in three levels, respectively, and the results and optimization of formability and shape freezing were carried out. The optimized results were confirmed by comparative analysis of formability and Spring Back. As a result of the experiment, it was possible to confirm the result value of the Spring Back of the final product according to the tensile change of the material.