The depositional environment of the Manhang and the Geumcheon Formation of the Pennsylvanian Gomog Croup is revealed to the shallow neritic marine milieu in this paper also as the results of Park (1963), Cheong(1975) and Kim (1976), through the analyses of stratigraphy, paleocurrent, properties of cross-beddings and sedimentational features. The formations contains some possible terrestrial sediments suggesting the paralic environment, which are however not recognized definitely within them. The paleocurrent analysis is made to the Manhang Formation only. The paleocurrent of the formation is known to belong to the shallow neritic longshore current. The paleocurrent analysis is based chiefly on the cross-bedding analysis, and subordinately on the texture of elastic coarse sediments. The paleocurrent mean is determined to $269^{\circ}$, that is, from east to west, of which direction is interpreted to the right angle to the slope of the basinal depository plane and also the parallel with die depositional strike, according to Klein (1960) and Selley's (1968) criteria. The variance value of paleocurrent directions of the Manhang Formation in the whole area studied is 6,374, and the values range from 3,394 to 6,957 according to the dirstricts. The paleocurreut pattern of the whole area shows polymodel, and the patterns in each district range from trimodel to quadrimodel. Those models approach to the shallow marine or paralic model of Tohill and Picard (1966), Picard and High (1968 a), Pisnak (1957) and Pettijohn (1962). The mean value of maximum inclinations of cross-beddings of the whole area is $19.9^{\circ}$ with the standard deviation of 8.4, and ranges from $15.6^{\circ}$ to $21.7^{\circ}$ in the districts. Comparing the histogram showing the frequency distribution of the maximum inclinations of cross-beddings of the Manhang Formation with the Pettijohn's (1962) histogram, it is found that the model approaches to his marine model. The Pennsylvanian Gomog Group of the coalfield is considered to have had been deposited in the pseudogeosynclinal zone on the plateau by the transgression of the Tethyan sea caused by the epirogenic movements during the Pennsylvanian Period.