The earth's crust is unceasingly undergoing deformations because of the forces acting upon it. The relationship between the tectonic forces and the resulting deformations are found from the states of stresses in the earth's crust induced by these forces. The study has been attempted to analyze the deformations of the overlying sedimentary layers, which are deformed by the magma intrusion along its lower boundary. The elastic model is constructed to analyze the geologic structures, by means of the theory of elasticity, and then the appropriate boundary conditions are given. The solution of the Airy stress function which satisfies the given boundary conditions is derived from the analytic method. The internal stress distributions of the deformed elastic model layer are portrayed by principal stress trajetories, and then the corresponding potential faults and joints systems are predicted from the Coulomb-Mohr failure criterion. The internal displacement distributions are shown by the calculated displacement components vectors, namely horizontal, vertical and net components. Results of the numerical calculations show the developments of some geologic structures as follows; (1) one set of shear joints and or two sets of shear joints which are oppisite directions, and one set of extension joints parallel to the ${\sigma}_1$ direction, (2) one set of high angle thrusts and normal faults, (3) symmetric fold; both limbs are dipping in opposite direction with low angle. The field work at the Wall-A San area, located near Jinju City, in southern Korea, had accomplished to compare the field structures with the predicted ones. The results of the comparison exhibits the developments of joint and fault systems satisfactorily consistent with each others. But the area does not show any type of folding, in spite of the intrusion of a granodiorite massif, this fact is one of the important features of the whole Kyungsang sedimentary basins of Mesozoic age distributed at the south-eastern parts of Korea. For this reason, it is thought that the magma intrusion had occurred with extremly low pressure. The geologic structures have been modified by the erosion and weathering throughout the geologic time, and the conditions of the sedimentary layers (width, thickness and radius of magma) are not the same as before, being intruded by the magma. To enlighten this, it is preferable to study these geologic structures with analyses of various types of rheological models.