DOI QR코드

DOI QR Code

Electron Spin Resonance Study of Manganese Ion Species Incorporated into Novel Aluminosilicate Nanospheres with Solid Core/Mesoporous Shell Structure

  • Back, Gern-Ho (Department of Chemistry, Changwon National University) ;
  • Kim, Ki-Yub (Department of Chemistry, Changwon National University) ;
  • Kim, Yun-Kyung (Department of Advanced Materials Chemistry. BK21 Research Team, Korea University) ;
  • Yu, Jong-Sung (Department of Advanced Materials Chemistry. BK21 Research Team, Korea University)
  • Received : 2010.07.03
  • Accepted : 2010.12.09
  • Published : 2010.12.20

Abstract

An ion-exchanged reaction of $MnCl_2$ with Al-incorporated solid core/mesoporous shell silica (AlSCMS) followed by calcinations generated manganese species, where average oxidation state of manganese ion is 3+, in the mesoporous materials. Dehydration results in the formation of $Mn^{2+}$ ion species, which can be characterized by electron spin resonance (ESR). The chemical environments of the manganese centers in Mn-AlSCMS were investigated by diffuse reflectance, UV-VIS and ESR spectroscopic methods. Upon drying at 323 K, part of manganese is oxidized to higher oxidation state ($Mn^{3+}$ and $Mn^{4+}$) and further increase in (average) oxidation state takes place upon calcinations at 823 K. It was found that the manganese species on the wall of the Mn-AlSCMS were transformed to tetrahedral $Mn^{3+}$ or $Mn^{4+}$ and further changed to square pyramid by additional coordination to water molecules upon hydration. The oxidized $Mn^{3+}$ or $Mn^{4+}$ species on the surfaces were reversibly reduced to $Mn^{2+}$ or $Mn^{3+}$ species or lower valances by thermal process. Mn(II) species I with a well resolved sextet was observed in calcined, hydrated Mn-AlSCMS, while Mn (II) species II with g = 5.1 and 3.2 observed in dehydrated Mn-AlSCMS. Both species I and II are considered to be non-framework Mn(II).

Keywords

References

  1. J.S Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, CT-W. Chu, D.H. Olson, E.W. Scheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114, 10834. (1992). https://doi.org/10.1021/ja00053a020
  2. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710. (1992). https://doi.org/10.1038/359710a0
  3. C.-Y. Chen, S.L. Burkett, H.-X. Li, M.E. Davis, Microporous Mater. 2, 27. (1993). https://doi.org/10.1016/0927-6513(93)80059-4
  4. S.B. Yoon, J.Y. Kim, J.-S. Yu, Chem. Commun. 1536. (2002).
  5. J.Y. Kim, S.B. Toon, F. Koli, J.-S. Yu, J. Mater. Chem. 11, 2912. (2001). https://doi.org/10.1039/b108207h
  6. A. Vinu, C. Streb, V. Murugesan, M. Hartman, J. Phys. Chem. B 107, 8297. (2003). https://doi.org/10.1021/jp035246f
  7. S.B. Yoon, J.Y. Kim, J.-S. Yu, Chem. Commun. 1740. (2003).
  8. S.B. Yoon, J.Y. Kim, J.H. Kim, Y.J. Park, K.R. Yoon, S.K. Park, J.-S. Yu, J. Mater. Chem. 17, 1758. (2007). https://doi.org/10.1039/b617471j
  9. H. Zhang, Sun, J.D. Ma, G. Weinberg, D.S. Su, X. Bao, J. Phys. Chem. B 110, 25908. (2006). https://doi.org/10.1021/jp065760w
  10. A. Vinu, D.P. Sawant, K. Ariga, K.Z. Hossain, S.B. Halligudi, M. Hartmann, M. Nomura, Chem. Mater. 17, 5339. (2005). https://doi.org/10.1021/cm050883z
  11. S.B. Yoon, K. Sohn, J.Y. Kim, C.-H. Shin, J.-S. Yu, T. Hyeon, Adv. Mater. 14, 19. (2002). https://doi.org/10.1002/1521-4095(20020104)14:1<19::AID-ADMA19>3.0.CO;2-X
  12. Q. Ji, S. Achaya, J. P. Hill, A. Vinu, S. B. Yoon, J.-S. Yu, K. Sakamoto, K. Anga, Adv. Funct. Mater. 199, 1792. (2009).
  13. W. Stober, A. Fink, E. Bohn, J. Colloid Interface Sci. 26, 62. (1968). https://doi.org/10.1016/0021-9797(68)90272-5
  14. C. Kaiser Ph.D. Thesis, Johannes Gutenberg-Universitat Mainz, Germany (1996).
  15. L. Kevan, Acc. Chem. Res. 20, 1. (1987). https://doi.org/10.1021/ar00133a001
  16. A. Pople, M. Newhouse, L. Kevan J. Phys. Chem. 99, 10019. (1995). https://doi.org/10.1021/j100024a051
  17. J.E. Maxwell, Adv. Catal. 31, 1. (1982). https://doi.org/10.1016/S0360-0564(08)60452-6
  18. M.A. Baltanas, A.B. Stiles, J.R. Katzer, Appl. Catal. 28, 13. (1986). https://doi.org/10.1016/S0166-9834(00)82490-2
  19. N.I. II’Chenko, G.I. Godolets, J. Catal. 39, 57. (1975). https://doi.org/10.1016/0021-9517(75)90282-1
  20. H.T. Karlsson, H.S. Rosenberg, Ind. Eng. Chem. Process Res. Dev. 23, 808. (1984). https://doi.org/10.1021/i200027a031
  21. D. Van der Kleut Ph. D. Thesis, University of Utrecht, The Nethelands (1994).
  22. A. Nishino, Catal. Today. 10, 107. (1991). https://doi.org/10.1016/0920-5861(91)80078-N
  23. M. Lo Jacono, M. Schiavello, Preparation of Catalysts, B. Delmon, P.A. Jacobs, G. Poncelet Eds Elsevier, Amsterdam p. 474 (1976).
  24. A. Popple, P. Baglioni, L. Kevan, J. Phys. Chem. 99, 14156. (1995). https://doi.org/10.1021/j100038a057
  25. A. Popple, L. Kevan, Langmuir 11, 4486. (1995). https://doi.org/10.1021/la00011a050
  26. A. Popple, M. Hartmann, L. Kevan, J. Phys. Chem. 99, 17251. (1995). https://doi.org/10.1021/j100047a032
  27. V. Luca, D.J. MacLachlan, R. Bramley, K. Morgan, J. Phys. Chem. 100, 1793. (1996). https://doi.org/10.1021/jp952090d
  28. M. Hartmann, A. Poppl, L. Kevan, J. Phys. Chem. 99, 17494 (1995). https://doi.org/10.1021/j100049a004
  29. G. Breuet, X. Chen, C. W. Lee, L. Kevan, J. Am. Chem. Soc. 114, 3720. (1992). https://doi.org/10.1021/ja00036a022
  30. G. Back, H. Lee, M. Kim, J.-S. Yu, S. Jeong , Y. B. Chae, J. Mater. Sci. 44, 5636 (2009) https://doi.org/10.1007/s10853-009-3794-z
  31. D. Cullity, Elements of X-ray diffraction, Addison-Wesley, Reading, MA, p. 87 (1987).
  32. J. Xu, Z. Luan, T. Wasowicz, L. Kevan, Micro Mesoporous Mater. 22, 179. (1998). https://doi.org/10.1016/S1387-1811(98)00103-6
  33. D.Y. Zhao, D. J. Goldfarb, Chem. Soc. Chem. Commun. 875. (1995).
  34. D.Y. Zhao, D.J. Goldfarb,In: L. Bonneviot, S. Kaliaguine, (Eds) Zeolites: A Refined Tool for Designing Catalytic Sites, Elsevier, Amsterdam pp 181-188. (1995).
  35. E. Meirovitch, R. Poupko, J. Phys. Chem. 82, 1920. (1978). https://doi.org/10.1021/j100506a013
  36. G. Brouet, X. Chen, C.W. Lee, J. Am. Chem. Soc. 114, 3720. (1992). https://doi.org/10.1021/ja00036a022
  37. Z. Levi, Gaitsimiring, D.J. Goldfarb, J. Phys. Chem. 95, 7830. (1991). https://doi.org/10.1021/j100173a051
  38. R. A. Scoonheydt, F. Delannay, E. d. Dekker, New York. P. 125. (1984).
  39. H. Knozinger, D. Ratnasamy , Catal. Rev.-SCi. Eng.17, 31. (1978) . https://doi.org/10.1080/03602457808080878
  40. W. Sjoerd Kijstra. Eduard K. Poels, Alfred Bliek, Bert M. Weckhuysen, and Robert A. Schoonheydt, J. Phys. Chem. B 101, 309. (1997). https://doi.org/10.1021/jp962343i
  41. Raluca Ciceo Lucacel, Carmen Marcus, V. Timar, I. Ardelean, Solid State Sciences 9, 850. (2007). https://doi.org/10.1016/j.solidstatesciences.2007.07.006
  42. S. R. G. Carrazan, C. Martin, V. Rives, R. Vidal, Spectrochimia Acta A, 52, 1107. (1996). https://doi.org/10.1016/0584-8539(95)01641-4
  43. R.J. Keller, Sigma Chemical Co. Inc, 2, 1039. (1985).
  44. G.W. Pratt, R. Coelho, Phys. Rev. 116, 381. (1959).
  45. M. Rjic, D. Stejakovic, S. Hocevar, V. Kaueic, Zeolites 13, 3849. (1993).
  46. S. Geschwind, M.P. Kisliuk, J.P. Remeika, D.L. Wood, Phys. Rev. 136, 1684. (1962).