Browse > Article
http://dx.doi.org/10.6564/JKMRS.2010.14.2.117

Triple isotope-[13C, 15N, 2H] labeling and NMR measurements of the inactive, reduced monomer form of Escherichia coli Hsp33  

Lee, Yoo-Sup (Department of Biotechnology, Konkuk University)
Ko, Hyun-Suk (Department of Biotechnology, Konkuk University)
Ryu, Kyoung-Seok (Division of Magnetic Resonance, Korea Basic Science Institute)
Jeon, Young-Ho (Division of Magnetic Resonance, Korea Basic Science Institute)
Won, Hyung-Sik (Department of Biotechnology, Konkuk University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.14, no.2, 2010 , pp. 117-126 More about this Journal
Abstract
Hsp33 is a molecular chaperone achieving a holdase activity upon response to a dual stress by heat and oxidation. Despite several crystal structures available, the activation process is not clearly understood, because the structure inactive Hsp33 as its reduced, zinc-bound, monomeric form has not been solved yet. Thus, we initiated structural investigation of the reduced Hsp33 monomer by NMR. In this study, to overcome the high molecular weight (33 kDa), the protein was triply isotope-[$^{13}C$, $^{15}N$, $^2H$]-labeled and its inactive, monomeric state was ensured. 2D-[$^1H$, $^{15}N$]-TROSY and a series of triple resonance spectra could be successfully obtained on a high-field (900 MHz) NMR machine with a cryoprobe. However, under all of the different conditions tested, the number of resonances observed was significantly less than that expected from the amino acid sequence. Thus, a possible contribution of dynamic conformational exchange leading to a line broadening is suggested that might be important for activation process of Hsp33.
Keywords
Hsp33; zinc-binding; inactive monomer; redox-switch; triple labeling; conformational exchange;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 E. Barbar, Biopolymers 51, 191. (1999).   DOI
2 C.M. Cremers, D. Reichmann, J. Hausmann, M. Ilbert, U. Jakob, J. Biol. Chem. 285, 11243. (2010).   DOI
3 C. Kumsta, U. Jakob, Biochemistry 48, 4666. (2009).   DOI
4 U. Jakob, W. Muse, M. Eser, J.C.A. Bardwell, Cell 96, 341. (1999).   DOI
5 M. Ilbert, J. Horst, S. Ahrens, J. Winter, P.C.F. Graf, H. Lilie, U. Jakob, Nat. Struct. Mol. Biol. 14, 556. (2007).   DOI
6 J. Winter, M. Ilbert, P.C.F. Graf, D. Ozcelik, U. Jakob, Cell 135, 691. (2008).   DOI
7 M.W. Akhtar, V. Srinivas, B. Raman, T. Ramakrishna, T. Inobe, K. Maki, M. Arai, K. Kuwajima, C.M. Rao, J. Biol. Chem. 279, 55760. (2004).   DOI
8 J.H. Hoffmann, K. Linke, P.C.F. Graf, H. Lilie, U. Jakob, EMBO J. 23, 160. (2004).   DOI
9 I. Janda, Y. Devedjiev, U. Derewenda, Z. Dauter, J. Bielnicki, D.R. Cooper, P.C.F. Graf, A. Joachimiak, U. Jakob, Z.S. Derewenda, Structure 12, 1901. (2004).   DOI
10 J. Vijayalakshmi, M.K. Mukhergee, J. Graumann, U. Jakob, M.A. Saper, Structure 9, 367. (2001).   DOI
11 S.-J. Kim, D.-G. Jeong, S.-W. Chi, J.-S. Lee, S.-E. Ryu, Nat. Struct. Biol. 8, 459. (2001).   DOI
12 H.-S. Won, L.Y. Low, R. De Guzman, M. Martinez-Yamout, U. Jakob, H.J. Dyson, J. Mol. Biol. 341, 893. (2004).   DOI
13 L. Jaroszewski, R. Schwarzenbacher, D. McMullan, P. Abdubek, S. Agarwalla, E. Ambing, H. Axelrod, T. Biorac, J.M. Canaves, H. J. Chiu, et al., Proteins 61, 669. (2005).   DOI
14 B. Odaert, I. Landrieu, K. Dijkstra, G. Schuurman-Wolters, P. Casteels, J.-M. Wieruszeski, D. Inze, R. Scheek, G. Lippens, J. Biol. Chem. 277, 12375. (2002).   DOI
15 D.-W. Sim, H.-C. Ahn, H.-S. Won, J. Kor. Magn. Reson. Soc. 13, 108. (2009).   DOI
16 J.-H. Kim, K.-Y. Lee, S.-J. Park, B.-J. Lee, J. Kor. Magn. Reson. Soc. 14, 45. (2010).   DOI
17 P.C.F. Graf, M. Martinez-Yamout, S. VanHaerents, H. Lilie, H.J. Dyson, U. Jakob, J. Bio. Chem. 279, 20529. (2004).   DOI