Ion-conducting polymer electrolyte membranes (PEMs) have recently used in developing fuel cell or solar cell for portable, mobile and residential applications [1]. Polymer electrolyte membrane fuel cell (PEMFC), direct methanol fuel cell (DMFC), alkaline electrolyte fuel cell (AFC) and dye-sensitized solar cell have been employing the ion-conducting PEMs to complete their electrical circuits to produce electricity.(omitted)
1. 표준화의 정의 - 표준화(Standardization)란 일반적으로 '사물에 합리적인 기준(standard)을 설정하고 다수의 사람들이 어떤 사물을 그 기준에 맞추는 것을 말함. - 산업규격 KS A 3001(품질관리용어)에 따르면 '표준을 합리적으로 설정하여 활용하는 조직적 행위'라고 정의함. ISO/STACO-1961에서는 '관계되는 모든 사람들의 편익을 목적으로 하는 특정한 활동을 향해 바르게 접근하기 위한 규칙을 작성하고 이를 적용하는 과정'으로 정의함(중략)
목적 : 21세기형 환경 친화적인 고도정수처리기술, 제균, 제탁, 소득부산물 저감 위한 최적기술로 각광받는 기술, 기존 정수처리공정과의 경제성 비교 및 막 운영관리 기술축적. 참여 5개 대표업체 : 데그레몽(프랑스 : Aquasouce 막), 대우건설(일본 : Asahikasei 막), 태영(미국 : US Filter 침지막), 비룡(일본 : Toray 막), 한화(캐나다 : Zeeweed 침지막)(중략)
생체 내에서의 요소 형성은 단백질이 아미노산으로 분해되어 인체에 남은 요소는 오줌으로 배출된다. 그러나 고농도의 urea의 경우 단백질을 변형시키게 된다[1-2]. 이러한 고 농도의 urea를 단백질 공정을 통해서 제거시키는 기술이 최근의 투석 과학이다. 그러나 이러한 방법은 urea의 제거와 함께 많은 양의 단백질과 양이온이 유출 및 오염의 문제가 많이 발생하고 있다[3].(중략)
Morphology of membrane affects its performance [1]. For a constant amount of fixed charges, the distribution of these charges is also significant to its performance (2). In some ionomer membranes such as Nafion, the membrane fixed charge is not randomly distributed, but occurs in clusters. Thus, the membrane solution is phase-separated, with the ion clusters, acting as inverted micelles in a polymer solvent.(omitted)
Polymer electrolyte membranes have been studied widely in chloro-alkali electrolysis, cationic exchange resins, and fuel cell applications. Especially, sulfonated polyimide membranes have been suggested as a potential polymer electrolyte in PEMFC due to their excellent thermal stability and high proton conductivity.(omitted)
The proton transport through proton exchange membranes is controlled by the distribution of hydrated structure connected with negative-charged fixed ions such as phosphonic acid, carboxylic acid and sulfonic acid, or water molecules within the membrane.(omitted)
Proton-exchange membranes have attracted much attention in the past few decades due to their important application in fuel cell systems. The mainly used proton-exchange membranes are perfluoropolymers such as DuPont's Nafion$^{(R)}$ and Asahi Chemical's Aciplex$^{(R)}$ because of their high performance including high proton conductivity & mechanical strength, and excellent thermal & chemical stability.(omitted)ted)
So far the most practical polymer electrolytes are gel systems, which contain a polymeric matrix, a lithium salt, and aprotic organic solvents. This has met with success but has had disadvantages that the addition of solvents promotes deterioration of the electrolyte's mechanical properties and increases its reactivity towards the lithium metal anode.[1](omitted)
막분리 기술인 정밀여과와 한외여과는 물질의 크기 차에 따른 체분리 (sieving)를 기본 원리로 하기 때문에 분자수준에서의 선택적 물질분리가 어렵다는 문제점이 있다. 이러한 문제점을 해결하기 위한 대안으로서 분리막에 분자수준에서의 물질 선택성을 부여한 친화성 막(affinity membrane) 제조에 대한 연구가 활발히 이루어지고 있다.(중략)
막을 이용한 기체분리의 경우 높은 투과도와 높은 선택도를 얻는 것은 매우 중요하면서도 어려운 일이다. 일반적으로 투과도가 높아지면 선택도가 낮아지고 선택도가 높아지면 투과도가 낮아지는 거동을 보인다. 이 두 가지의 특성을 적절히 조절하여 최적화하기 위하여 막은 기계적 강도를 높이기 위한 다공성의 지지층과 실질적인 분리가 일어나는 얇은 선택 층으로 구성된 복합막의 형태로 제조된다.(중략)
Flux-enhancement mechanism of thin-film-composite (TFC) membranes for the reverse comosis (RO) process was newly explained by positron annihilation lifetime spectroscopy (PALS) that has been found to be applied for detecting molecular vacancies or pores having sizes that are equivalent to salt or hydrate ions in RO membrane.(omitted)
이산화탄소는 메탄, 오존, 산화질소, CFC등의 온실기체 중 약 50%를 차지하는 물질로서 이산화탄소 발생의 저감과 함께 회수 기술의 개발을 통한 배출량 억제는 환경적 측면에서 대단히 중요한 것으로 간주되고 있다. 따라서 각종 산업분야에서 발생하는 다양한 성분을 가진 다성분계 배가스내에 존재하는 10%내외의 이산화탄소만을 분리정제 농축하여 메탄, 메탄을 등의 다른 화학물질의 제조의 원료, 신에너지원, 고부가가치의 신제품 등으로 전환하는 연구가 활발히 진행 중이다.(중략)
수처리를 위한 분리막은 정수, 하수 및 오폐수 처리등 그 사용이 나날이 증가하고 있고, 막분리 공정의 경제성을 결정하는 막오염에 대한 연구가 활발히 이루어지고 있다. 분리막 표면의 오염 물질을 제거하기 위하여 표면유속의 증가, 분리막 회전, 진동 등에 의한 물리적 방법들이 사용되었고, 특히 근래에는 시설의 단순화 등을 이유로 침지형 모듈 이용이 증대되고 있으며[1] 특히 단위면적당 높은 막면적을 갖는 중공사막 침지형 모듈의 이용이 증가하고 있다.(중략)
최근에 이루어지고 있는 생명공학의 성장에 따라 단백질을 대량으로 정제할 수 있는 공정 개발에 대한 필요성이 부각되고 있다. 이러한 목적으로 기존에 이루어지고 있는 침전법, 결정화법 그리고 원심분리법과 같은 방법은 선택도가 매우 떨어지는 단점이 있으며, 반면 크로마토그래피 및 전기영동과 같은 방법은 탁월한 선택도에 비해 그 규모가 매우 작은 경우 에 알맞은 방법으로서 대량생산 체계에서는 적합하지 못하다는 것이 그 단점이다.(중략)
산업 발전에 따른 각종 유기용제 및 휘발성유기혼합물(VOCs)의 사용이 점차 증가하는 실정이다. 그러나 유기용제들은 많은 양이 대기중 및 수중으로 방출되고 있으며, 이는 환경적으로 악영향을 끼칠 뿐 아니라 경제적으로 막대한 손실이 아닐 수 없다. 최근 VOCs의 회수에 대한 여러 분야에서 광범위하게 연구되어지고 있고, 이중 막분리 공정은 여러 가지 장점을 가지고 있어 기존의 공정을 대체할 수 있는 잠재력을 가지고 있다.(중략)
원자력의 고온가스로(HTGR)의 열원에서 약 1,00$0^{\circ}C$의 열을 이용하여 물을 분해하는 열화학적 수소제조 IS 프로세스는 다음과 같은 3단계 화학반응식에 의해 수소를 제조한다. 이들 화학반응의 수행과정을 반응온도와 공정에 따라 도식화하면 Fig. 1과 같은 3가지 공정으로 구성된다.(중략)
축산폐수에 대한 방류수 수질기준 항목에 COD의 추가 및 질소와 인의 기준이 강화(1999년)됨에 따라 많은 축산폐수처리시설의 보강과 새로운 기술도입이 요구되고 있다. 따라서 대부분의 공공처리시설에서는 질소 및 인을 제거하기 위하여 2차 처리단계에서 무산소조(탈질조)와 호기성(포기조)를 연계한 생물학적 질소제거를 실시하고, 최종처리단계에서 응집제 투입에 의한 응집ㆍ침전공정후 모래여과 또는 활성탄 흡착공정에 의한 인과 색도제거 하는 등, 생물학적 처리 및 물리ㆍ 화학적 처리시설이 추가적으로 보완ㆍ적용단계에 있다.(중략)
최근 들어 용수가격 상승과 갈수기 대비 대체용수 확보차원에서 폐수를 처리하여 공업용수를 재이용하는 사례가 증가하고 있다. 국내의 경우 단위 사업장에서 폐수재이용 시설을 설치한 사례는 비교적 많은 편이나, 정상적으로 가동하는 경우는 드문 것으로 조사되고 있다[1]. 이는 초기 시설 투자비를 줄이기 위하여 전처리를 소홀히 한 것이 가장 큰 원인으로 판단된다.(중략)
일반적인 활성슬러지 공정은 MLSS 1,500 - 3,000 mg/L 정도인데 MBR 공정은 보통 8,000 mg/L 이상의 농도로 운전할 수 있어, 높은 유기물 제거와 질산화 효율을 증가시킬 수 있다. 따라서 기존의 포기조 용량을 줄일 수 있으며 미생물의 자산화(Auto-Oxidation)가 증가하여 슬러지 발생량(Sludge Production)은 줄어들게 된다.(중략)
벤젠과 사이클로헥산을 투과증발법을 이용하여 분리하는 경우에는, 벤젠과 사이클로헥산의 물리적 성질이 비슷하고, 그 끓는점이 매우 비슷하기 때문에, 물리화학적인 특성을 먼저 알아야 한다. 벤젠은 이중결합을 가지고 있고, 공명구조를 이루고 있다. 즉 극성기와 강한 상호작용을 할 수 있는 파이전자를 벤젠이 가지고 있음을 주목하여야 한다.(중략)
클레이는 1 나노미터 정도의 두께를 가지는 실리케이트층으로 이루어져 있으며, 이러한 클레이를 고분자 사이에 나노미터 단위로 분산시키는 기술에 대한 연구가 활발하게 이루어져오고 있다. 최근에는 Nylon-6에 유기화된 클레이를 분산시키는 연구에 대한 결과가 발표된 바 있다. 클레이를 사용한 나노복합체의 개발은 제품의 경량화를 위한 노력과 더불어 이루어져왔으며, 특히 최근에 급격히 발전하고 있는 나노기술에 힘입어서 나노복합체의 개발위주로 이루어지고 있다.(중략)
A direct methanol fuel cells (DMFCs) using polymer electrolyte membranes are one of the most attractive power sources for a wide range of application from vehicles to portable utilities due to the stable operation at a rarely low temperature, the high energy generation yield and energy density, the simplicity of system.(omitted)
The dyeing effluent is a highly colored stream containing unfixed dyes along with salts and auxiliary chemicals such as emulsifying agents. Moreover, Textile dying is a chemically intensive process and consumes large quantities of water. Difficulties in the effluent treatment arise from its non-degradable property by aerobic digestion.(omitted)
Membrane bioreactors (MBRs) used for water purification are based on the association of a bioreactor, within which a culture of microorganisms degrades the polluting compounds, and a membrane filtration separator. The use of a porous barrier usually ensures the disinfection of the effluent.(omitted)
Various polymeric hollow fiber membranes have been prepared and been used widely due to their high surface area per unit volume and high permselectivity. However, the organic materials are only limited to mild operating conditions because of their weak thermal stability and ease of fouling.(omitted)
Gas separation membrane technology is useful for a variety of applications [1, 2]. such as hydrogen recovery from reactor purge gas, nitrogen and oxygen enrichment, water vapor removal from air, stripping of carbon dioxide from natural gas. etc. Although membrane separations are attractive because of low energy costs and simple operation, low permeabilities and/or selectivity often limit membrane applications [3, 4].(omitted)
상전이법으로 제조된 비대칭막은 세공의 크기를 nm이하의 수준으로 줄여 주면 막 여과저항이 크게 증가하여 경제성이 떨어지는 문제점을 가지고 있다. 이에 대한 대안으로 복합막이 제조되어 사용되고 있는데, 복합막은 우수한 투과도와 높은 배제율을 달성하기 위한 적극적인 대안이 되고 있다. 정수처리 및 수질환경 분야에 사용되는 나노복합막의 경제성을 더욱 향상시키기 위해서는 나노막의 투과유속을 증가시켜야 하는데, 복합막의 투과 성능은 지지체의 특성과 스킨층을 형성시키는 기술에 의해 좌우된다.(중략)
TFEMA(2,2,2-trifluoroethylmethacrylate)는 광섬유 코팅제, 발수 발유제, 기능성 페인트, 방오가공제, 고분자의 표면개질제 등의 많은 응용제품에 활용되는 단량체로 그 시장규모가 국내에서 600억원, 전 세계에서 8,000억에 해당하는 고부가가치의 화학원료이다. TFEMA는 현재 산촉매하의 8.$0^{\circ}C$의 고온에서 TFEA(2,2,2-trifluoroethaol)와 MA(methacrylic acid)와의 에스텔화 반응으로 제조된다.(중략)
기계적, 열적 강도가 우수한 무기막과 다양한 기능성을 가질 수 있는 유기막의 결합에 관하여 그동안 많은 연구가 진행되어왔다. 무기막은 높은 열적, 기계적 안정성을 가지고 있기 때문에 지지체로써 큰 이점을 가지고 있으며, 고분자를 비롯한 유기막은 그 다양성과 응용성에 있어 장점을 가지고 있다. 이에 본 연구는 지지체로써 물성이 뛰어난 세라믹막의 표면에 다양한 유기 기능기를 가지는 실란화합물을 그래프팅 방법을 통하여 도입하여 유-무기 혼성막을 제조하고 표면 특성의 변화를 살펴보고자 하였다.(중략)
Dimethyl ether(DME)는 대기 오염 문제와 에너지 문제가 대두됨에 따라 저공해 경유 대체 연료로 각광받고 있는 물질이다. 최근 들어 메탄올로부터 고체산 촉매를 이용하여 DME를 합성하고자 하는 연구가 활발히 진행 중이다[1-4]. 메탄올로부터 DME의 합성시 촉매로는 제올라이트나 SiO$_2$/${\gamma}$-Al$_2$O$_3$를 사용하기도 하지만 ${\gamma}$-Al$_2$O$_3$나 변형된 ${\gamma}$-Al$_2$O$_3$가 일반적으로 사용된다.(중략)
이산화탄소는 메탄, 오존, 산화질소, CFC등의 온실기체 중 약 50%를 차지하는 물질로서 이산화탄소 발생의 저감과 함께 회수 기술의 개발을 통한 배출량 억제는 환경적 측면에서 대단히 중요한 것으로 간주되고 있다. 따라서 각종 산업분야에서 발생하는 다양한 성분을 가진 다성분계 배가스내에 존재하는 10%내외의 이산화탄소만을 분리정제 농축하여 메탄, 메탄올 등의 다른 화학물질의 제조의 원료, 신에너지원, 고부가가치의 신제품 등으로 전환하는 연구가 활발히 진행 중이다.(중략)
지금까지의 악을 이용한 분리공정은 수처리 분야에 초점이, 맞춰져 있었고, 상업적으로도 상용화되어왔다. 그러나 최근 들어 기체분리에 관한 많은 연구가 진행되고 있을 뿐 아니라 상업적으로도 관심의 대상이 되고 있다. 그 관심이 성공으로 이어지기 위해서는 기계적, 화학적으로 안정하며, 높은 선택도와 함께 높은 투과도를 갖는 막을 안정적으로 제조하는 기술의 개발이 시급하다.(중략)
Volatile organic compounds (VOCs) are emitted as gases from certain solids or liquids. VOCs include a variety of chemicals, some of which may have short- and long-term adverse health effects. Current technologies for the treatment of VOC contaminated off-gasses are expensive to operate and more cost effective technologies are needed.(omitted)
Gas separation membranes are now used in a wide variety of application areas as oxygen enrichment, hydrogen recovery, acid gas treatment, and natural gas dehydration etc [1]. Since polymeric membranes offer attractive properties for gas separation application, they have been variously studied [2-4].(omitted)
고급산화법 중 하나인 광촉매인 TiO$_2$를 이용한 시스템은 300~400nm 파장의 UV영역에서 비교적 적은 에너지로 유기 오염 물질을 $CO_2$와 $H_2O$로 산화시킨다[1]. 따라서 폐수용액 중 오염물질을 제거한 경우에도 슬러리로 인한 2차 오염의 문제가 없다. 최근에는 난분해성 물질이나 독성을 가진 물질을 포함된 폐수처리 시설의 고도처리를 위하여 분리막을 도입하는 추세이다.(중략)
Carbon molecular sieve (CMS) membranes have superior gas permeation and separation performance compared with polymeric membranes$^{1.3}$ . Up to now, CMS membranes mostly have been mostly focused on the kinds of precursor and pyrolysis condition (pyrolysis temperature, heating rate, pyrolysis atmosphere).(omitted)
FFF에서 외부장은 시료의 종류에 따라 선택적으로 사용되며, 그 외부장의 종류에 따라 세부기술로 구분되어진다. 원심력(gravitational or centrifugal field)을 외부장으로 사용하는 침강장-흐름분획법(sedimentation FFF)은 지름이 0,05∼1um정도인 콜로이드 입자의 분리에 좋은 방법이다. 온도구배(thermal fradient)를 이용하는 열장-흐름분획법(thermal FFF)은 유기 고분자의 분리 및 고분자의 물성연구에 이용된다.(중략)
In our previous study, the crosslinked PVA/PAM membrane was prepared to investigate the pervaporation performance, and analyzed by FT-IR and water swelling test. This main objective of this work was to investigate the aging effect of PVA/PAM membrane with swelling time.(omitted)
DMFC 성능을 개선시키기 위한 연구의 큰 영역은 고분자전해질막에 있으며 methanol crossover에 대한 영향을 최소화시킬 수 있는 소재개발이 우선적으로 요구되는 실정이다. 이러한 문제의 해결을 위해 Pivovar와 Cussler [1] 등은 투과증발 막분리공정에서 메탄올 저항체로 잘 알려진 폴리비닐알콜(poly vinyl alcohol, PVA)를 이용한 전해질막 연구를 하였다.(중략)
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.