Let Rn be the space of rational functions with prescribed poles. If r ∈ Rn, does not vanish in |z| < k, then for k = 1 $${\mid}r^{\prime}(z){\mid}{\leq}{\frac{{\mid}B^{\prime}(z){\mid}}{2}}\sup_{z{\in}T}{\mid}r(z){\mid}$$, where B(z) is the Blaschke product. In this paper, we consider a more general class of rational functions rof ∈ Rm*n, defined by (rof)(z) = r(f(z)), where f(z) is a polynomial of degree m* and prove a more general result of the above inequality for k > 1. We also prove that $$\sup_{z{\in}T}\left[\left|{\frac{r^{*\prime}(f(z)}{B^{\prime}(z)}}\right|+\left|{\frac{r^{\prime}(f(z))}{B^{\prime}(z)}}\right|\right]=\sup_{z{\in}T}\left|{\frac{(rof)(z)}{f^{\prime}(z)}}\right|$$, and as a consequence of this result, we present a generalization of a theorem of O'Hara and Rodriguez for self-inverse polynomials. Finally, we establish a similar result when supremum is replaced by infimum for a rational function which has all its zeros in the unit circle.