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Abstract. In this paper, we study the existence and uniqueness of solutions for a class of

fractional differential inclusion including a maximal monotone operator in real space with

an initial condition. The main results of the existence and uniqueness are obtained by using

resolvent operator techniques and multivalued fixed point theory.

1. Introduction

The existence and uniqueness of solutions for a class of fractional differen-
tial inclusions including a maximal monotone operator is a complex topic in
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mathematics. It involves studying the behavior of fractional differential equa-
tions with inclusion terms and the properties of maximal monotone operators.
To determine the existence and uniqueness of solutions in this context, it is
necessary to consider various mathematical techniques and theories specific to
fractional calculus and monotone operators. These may include fixed point
theorems, variational methods, and functional analysis. It is important to
note that providing a comprehensive answer to this question would require a
detailed analysis of the specific fractional differential inclusion and the prop-
erties of the maximal monotone operator involved. Differential inclusions of
fractional order have played a major role in physical, chemical and electronic
[1, 3, 4, 7, 13]. These differential inclusions are used to describe the nonlinear
viscoelastic behavior of some viscoelastic materials

In this paper, we consider the following fractional differential inclusion with
initial condition

(P)

{
Dα

0+x (t) ∈ −Ax (t) , a.e. t ∈ (0, T ] ,
t1−αx (t)

∣∣
t=0

= x0, x0 ∈ R∗,

where T > 0, A : R ⇒ R is a maximal monotone operator (set-valued map-
ping) and Dα

0+ is the standard Riemann-Liouville fractional derivative of order
α ∈ (0, 1). Research regarding the differential inclusion in situations where
the normal derivative (α = 1) has been studied in [2, 14].

Within this paper, we shall establish both the presence and singularity of the
solution to the posed problem by employing the Banach fixed point theorem,
specifically when the operator A is an inverse strongly monotone. To show
the existence and uniqueness of solutions of (P), for all λ > 0, we consider the
following problem:

(Pλ)

{
Dα

0+x (t) = −Aλ
(
x (t)− λDα

0+x (t)
)
, a.e. t ∈ (0, T ] ,

t1−αx (t)
∣∣
t=0

= x0 ∈ R∗,

where T > 0, Aλ is a Yosida approximation of A (see, Definition 2.9) and Dα
0+

is a Riemann-Liouville fractional derivative of order α ∈ (0, 1) .

2. Preliminaries

In this section, we recall some basic notions. Let T > 0, denote by C ([0, T ] ,R)
the Banach space of all continuous functions from [0, T ] into R with the norm:

x −→ ‖x‖∞ = sup {|x (t)| : t ∈ [0, T ]} .

For all λ > 0, we consider the space

Cλ ([0, T ] ,R) :=
{
x : [0, T ]→ R | tλx ∈ C ([0, T ] ,R)

}
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with the norm : x −→ ‖x‖Cλ = sup
t∈[0,T ]

∣∣tλx (t)
∣∣. Clearly

(
Cλ ([0, T ] ,R) , ‖·‖Cλ

)
,

then it is a Banach space.

By L1 ([0, T ] ,R) , we denote the space of all Lebegue-integrable functions
from [0, T ] into R with the norm

x −→ ‖x‖L1 =

∫ T

0
|x (t)| dt.

Let AC ([0, T ] ,R) be the space of functions x which are absolutly contin-
uous on [0, T ]. It is known see [16, p.338] that AC ([0, T ] ,R) coincides with
the space of primitives of Lebesgue summable functions.

x ∈ AC ([0, T ] ,R) ⇐⇒ x (t) = c+
∫ t

0 ϕ (s) ds
(
ϕ (.) ∈ L1 ([0, T ] ,R)

)
.

For n ∈ N∗ we denote by ACn ([0, T ] ,R) the space of real-valued functions
x which have continuous derivatives up to order n − 1 on [0, T ] such that

x
(n−1) ∈ AC ([0, T ] ,R) . In particular, AC1 ([0, T ] ,R) = AC ([0, T ] ,R) .

Definition 2.1. ([15]) The Riemann–Liouville fractional integral of order α >
0 of a function x ∈ L1 ([0, T ] ,R) is defined by

Iα0+x (t) =
1

Γ (α)

∫ t

0
(t− s)α−1 x (s) ds,

where Γ (·) is the Euler gamma function defined by Γ (α) =
∫ +∞

0 tα−1e−tdt.

Definition 2.2. ([15]) For a function x ∈ ACn ([0, T ] ,R), the Riemann–
Liouville fractional derivative of order α > 0 of x, is defined by

Dα
0+x (t) =

1

Γ (n− α)

(
d

dt

)n ∫ t

0
(t− s)n−α−1 x (s) ds, t ∈ [0, T ] ,

where n = [α] + 1 ([α] denotes the integer part of the real number α).

Lemma 2.3. ([15]) The general solution of linear fractional differential equa-
tion

Dα
0+x (t) = 0, t > 0

is given by
x (t) = c1t

α−1 + c2t
α−2......+ cnt

α−n, (2.1)

where ci ∈ R, i = 1, 2, ...., n.

Lemma 2.4. ([15]) For t > 0, we have

Iα0+t
β−1 = Γ(β)

Γ(α+β) t
β+α−1, α, β > 0. (2.2)
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Lemma 2.5. The function xλ (·) solves the problem (Pλ), if and only if it is
a solution of the integral equation:

xλ (t)=x0t
α−1− 1

Γ (α)

∫ t

0
(t−s)α−1Aλ (xλ (s)−λDα

0+xλ (s)) ds, t ∈ (0, T ] .

(2.3)

Proof. Suppose the function xλ (·) satisfies the problem (Pλ) . Then applying
Iα0+ to both sides of Dα

0+xλ (t) = −Aλ
(
xλ (t)− λDα

0+xλ (t)
)
, we find

Iα0+D
α
0+xλ (t) = −Iα0+Aλ (xλ (t)− λDα

0+xλ (t)) .

In view of Lemma 2.3, we get

xλ (t) = c1t
α−1 − 1

Γ (α)

∫ t

0
(t− s)α−1Aλ (xλ (s)− λDα

0+xλ (s)) ds. (2.4)

The condition t1−αxλ (t)
∣∣
t=0

= xo implies that

c1 = x0. (2.5)

Substituting (2.5) in (2.4) we get the integral equation (2.3). The converse
can be proved by direct computations. The proof is completed. �

A multifunction and a set-valued map are related concepts in mathematics,
particularly in the field of functional analysis and set theory see, [5, 6].

Definition 2.6. ([6]) Let X and Y be two sets. F : X ⇒ Y or F : X → P (Y )
(where P (Y ) = 2Y denotes set of all possible subsets of Y ) is a multifunction
or set-valued map, if to each element x of X, we associate a subset F (x) ⊂ Y .

The domain of a multifunction F : X ⇒ Y is the subset of X denoted by

domF := {x ∈ X : F (x) 6= φ} .
The graph of a multifunction F : X ⇒ Y is the subset of X × Y define by

graphF := {(x; y) ∈ X × Y : x ∈ domA and y ∈ F (x)} .
We call the reverse of F , the set multivaued map F−1 : Y ⇒ X such that

x ∈ F−1 (y) ⇐⇒ y ∈ F (x) .

A monotone operator and a maximal monotone operator are concepts from
convex analysis and functional analysis, often used in the study of convex
optimization and variational inequalities see [10, 11, 12, 17].

In the following, we consider X a real Hilbert space and A : X ⇒ X a
set-valued map.

Definition 2.7. ([6]) The operator A : X ⇒ X is said to be monotone, if
〈y1 − y2, x1 − x2〉 ≥ 0 for all (xi, yi) ∈ graphA, i = 1, 2, where, 〈., .〉 represents
the inner product.
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Definition 2.8. ([6]) A monotone operator A is called maximal, if there is no
other monotone operator whose graph strictly contains the graph of A.

Maximal monotone multifunctions find applications in various areas, in-
cluding convex analysis, optimization, game theory, and economics. They are
particularly useful when dealing with problems that involve non-differentiable
or non-convex functions, as they allow for a more flexible modeling of relation-
ships between variables. Understanding maximal monotone multifunctions
involves a deep understanding of set-valued mappings, convexity, and func-
tional analysis. It’s a sophisticated mathematical concept used in advanced
optimization and variational inequality problems. The resolvent operator and
the Yosida approximation are concepts closely related to maximal monotone
operators in convex analysis and optimization.

Definition 2.9. ([5]) Let A : X ⇒ X be a maximal monotone operator. For
λ > 0 the operator JAλ : X→ domA ⊂ X defined by

JAλ = (Id + λA)−1

is called the resolvent of A or the resolvent operator of A. and for λ > 0 the
operator Aλ : X→ domA ⊂ X defined by

Aλ =
1

λ

(
Id − JAλ

)
is called theYosida approximation of A, where Id is the identity operator in X.

Proposition 2.10. ([5]) Let A : X ⇒ X be a maximal monotone operator.
Then for all λ > 0 we have the resolvent JAλ is a maximal monotone, single-

valued and Aλ is Lipchitz with constant 1
λ .

Proposition 2.11. ([6]) Let A : X ⇒ X be a maximal monotone operator.
Then, we have

(1) For all λ, µ > 0 and for all x ∈ X, JAλ (x) = JAµ
(µ
λx+

(
1− µ

λ

)
JAλ (x)

)
.

(2) For all λ, µ > 0, (Aλ)µ = Aλ+µ.

(3) For all λ > 0 and for all y ∈ X, Aλ (y) ∈ A
(
JAλ (y)

)
.

(4) For all λ > 0, domJAλ = domAλ = X.

Theorem 2.12. ([5]) Let A : X ⇒ X be a maximal monotone. Then for all
λ > 0, Id + λA is bijective, in other terms for each y ∈ X, there is a unique
x ∈ domA such that y ∈ x+ λA (x) .

Definition 2.13. ([9]) Let A : X ⇒ X be an operator and β > 0.

(1) We say thatA is β−strongly monotone if for all (x, u) ∈ graphA, (y, v) ∈
graphA, 〈x− y, u− v〉 ≥ β ‖ x− y ‖2 .
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(2) A : X ⇒ X is called maximally β−strongly monotone operator if
there is no β−strongly monotone operator B : X ⇒ X such that
graphA ⊂ graphB, that is, for every (x, u) ∈ X×X, (x, u) ∈ graphA

if and only if for all (y, v) ∈ graphA, 〈x− y, u− v〉 ≥ β ‖ x− y ‖2 .

Definition 2.14. ([9]) Let A : X ⇒ X be an operator and β > 0.

(1) We say that A is β−inverse strongly monotone if for all (x, u) ∈
graphA, (y, v) ∈ graphA, 〈x− y, u− v〉 ≥ β ‖ u− v ‖2 .

(2) A β−inverse strongly monotone operator A : X ⇒ X is called maxi-
mally β−inverse strongly monotone operator if there is no β−inverse
strongly monotone operator B : X ⇒ X such that graphA ⊂ graphB,
that is, for every (x, u) ∈ X×X, (x, u) ∈ graphA if and only if (y, v) ∈
graphA, 〈x− y, u− v〉 ≥ β ‖ u− v ‖2 .

Proposition 2.15. ([8]) If A is a β−strongly monotone, then JAλ is 1
1+λβ -

Lipschitz.

Proposition 2.16. ([8]) If A is maximally β−inverse strongly monotone, then
Aλ is 1

β+λ -Lipschitz.

Now, we will state the Banach fixed point theorem.

Theorem 2.17. ([14]) Let X be a Banach space with a contraction mapping
T : X→ X. Then T admits a unique fixed-point.

3. Main results

3.1. Existence and uniqueness of solutions to differential inclusions
with inverse strongly monotone operator. In this subsection, we con-
sider A : R ⇒ R is a maximally β−inverse strongly monotone operator.

Theorem 3.1. If β > Γ(α)Tα

Γ(2α) and for all λ > 0, there exists a unique solution

of problem (Pλ) in C1−α ([0, T ] ,R) .

Proof. Let λ > 0. For our problem, we define the function f : R× R→ R by

f (u, v) = −Aλ (u− λv) .

Then, we should note that f is well-defined because Aλ : R → R is singular
and domAλ = R.
We define the operator Φ : C1−α ([0, T ] ,R)→ C1−α ([0, T ] ,R) by

(Φx) (t) = x0t
α−1 − 1

Γ (α)

∫ t

0
(t− s)α−1 g (s) ds, t ∈ (0, T ] ,
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where g : [0, T ]→ R is a function satisfying the functional equation

g (t) = −Aλ (x (t)− λg (t)) .

By Lemma 2.5, the fixed points of operator Φ are solutions of (Pλ) .

In order to prove that Φ accepts a fixed point, We will follow the next steps:

Step 1. The operator Φ is well-define, that’s to say: for every

x (·) ∈ C1−α ([0, T ] ,R) and t ∈ (0, T ] the integral 1
Γ(α)

∫ t
0 (t− s)α−1 g (s) ds

belongs to C1−α ([0, T ] ,R) .
For each t ∈ (0, T ], we have

|g (t)| − |f (0, 0)| ≤ |g (t)− f (0, 0)| , where f (0, 0) = Aλ (0) ,

≤ |−Aλ (x (t)− λg (t)) +Aλ (0)|

≤ 1

λ+ β
|x (t)|+ λ

λ+ β
|g (t)| ,

because Aλ is 1
λ+β−Lipschitz. After doing some simple arithmetic operations

of the above, we get

|g (t)| ≤ 1

β
|x (t)|+ λ+ β

β
|Aλ (0)| .

Then, |g (t)| ≤ 1
β |x (t)|+ c, where c = λ+β

β |Aλ (0)| .
For every x (·) ∈ C1−α ([0, T ] ,R), we have∣∣∣∣ t1−αΓ (α)

∫ t

0
(t− s)α−1 g (s) ds

∣∣∣∣ ≤ t1−α

Γ (α)

∫ t

0
(t− s)α−1 |g (s)| ds,

≤ t1−α

Γ (α)

∫ t

0
(t− s)α−1

(
1

β
|x (s)|+ c

)
ds,

≤ t1−α

Γ (α)

∫ t

0
(t− s)α−1sα−1

(
1

β
sup
t∈[0,T ]

∣∣t1−αx (t)
∣∣)ds

+
t1−α

Γ (α)

∫ t

0
(t− s)α−1 cds,

≤ t1−α
(

1

β
‖x‖C1−α

)
1

Γ (α)

∫ t

0
(t− s)α−1 sα−1ds

+
ct

Γ (α+ 1)

≤ t1−α
(

1

β
‖x‖C1−α

)(
Iα0+t

α−1
)

(t) +
ct

Γ (α+ 1)
.
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By using (2.2), we get∣∣∣∣ t1−αΓ (α)

∫ t

0
(t− s)α−1 g (s) ds

∣∣∣∣ ≤ TαΓ (α)

βΓ (2α)
‖x‖C1−α

+
cT

Γ (α+ 1)
,

that is to say that the integral exists and belongs to C1−α ([0, T ] ,R) .

Step 2. Let x (.) , y (.) ∈ C1−α ([0, T ] ,R). Then for t ∈ (0, T ], we have

(Φx) (t)− (Φy) (t) =
1

Γ (α)

∫ t

0
(t− s)α−1 (g (s)− h (s)) ds,

where g (.) , h (.) ∈ C1−α ([0, T ] ,R) such that

g (t) = −Aλ (x (t)− λg (t)) , h (t) = −Aλ (y (t)− λh (t)) .

Since A : R ⇒ R is a maximally β−inverse strongly monotone operator, then
Aλ is 1

λ+β−Lipschitz and we get

|g (t)− h (t)| = |−Aλ (x (t)− λg (t)) +Aλ (y (t)− λh (t))|

≤ 1

λ+ β
|x (t)− y (t)|+ λ

λ+ β
|g (t)− h (t)| .

So, |g (t)− h (t)| − λ
λ+β |g (t)− h (t)| ≤ 1

λ+β |x (t)− y (t)| . We get,

|g (t)− h (t)| ≤ 1

β
|x (t)− y (t)| .

For t ∈ (0, T ], we have

|(Φx) (t)− (Φy) (t)| ≤ 1

Γ (α)

∫ t

0
(t− s)α−1 |g (s)− h (s)| ds

≤ 1

βΓ (α)

∫ t

0
(t− s)α−1 sα−1

∣∣s1−α (x (s)− y (s))
∣∣ ds

≤ 1

β
‖x− y‖C1−α

(
Iα0+t

α−1
)

(t)

≤ Γ (α) t2α−1

βΓ (2α)
‖x− y‖C1−α

.

Therefore, we have∣∣t1−α ((Φx) (t)− (Φy) (t))
∣∣ ≤ Γ (α) tα

βΓ (2α)
‖x− y‖C1−α

,

which implies that

‖Φx− Φy‖C1−α
≤ Γ (α)Tα

βΓ (2α)
‖x− y‖C1−α

.

Since β > Γ(α)Tα

Γ(2α) , thus Γ(α)Tα

βΓ(2α) < 1. So Φ is a contraction.
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As a consequence of Banach fixed point theorem, if we get that Φ has a
unique fixed point which is a unique solution of the problem (Pλ). �

Example 3.2. Let A : R ⇒ R be a maximal monoton operator defined as
A (x) = {2x} . We consider the following problem{

−Dα
0+x (t) ∈ −A (x (t)) , a.e. t ∈ (0, T ] , α ∈ (0, 1) ,

t1−αx (t)
∣∣
t=0

= x0, x0 ∈ R∗. (3.1)

The operator A (·) is 2−inverse strongly monotone operator. The fractional
inclusion (3.1) is given, by the following linear initial value problem{

Dα
0+x (t) = −2x (t) , a.e. t ∈ (0, T ] , α ∈ (0, 1) ,

t1−αx (t)
∣∣
t=0

= x0, x0 ∈ R∗.

The unique solution has the form [15, 18],

x (t) = Γ (α)x0t
α−1Eα,α (−2tα) ,

where Eα,α (·) is Mittag–Leffler function [15] defined by

Eα,α (z) =

∞∑
k=0

zk

Γ ((k + 1)α)
.

In the next proposition, we prove that the solution of problem (Pλ) is not
depend by λ. For all λ > 0, we define the set,

Eλ = {x ∈ C1−α ([0, T ] ,R) | Dα
0+x (t) = −Aλ (x (t)− λDα

0+x (t)) , t ∈ [0, T ]} .

Proposition 3.3. For all λ, µ > 0, we have Eλ = Eµ.

Proof. Let λ > 0. Then, we have

x ∈ Eλ ⇐⇒ Dα
0+x (t) = −Aλ

(
x (t)− λDα

0+x (t)
)
, t ∈ [0, T ]

⇐⇒ Dα
0+x (t) = − 1

λ

(
id− JAλ

) (
x (t)− λDα

0+x (t)
)
, t ∈ [0, T ]

⇐⇒ −λDα
0+x (t) = x (t)− λDα

0+x (t)
−JAλ

(
x (t)− λDα

0+x (t)
)
, t ∈ [0, T ]

⇐⇒ x (t) = JAλ
(
x (t)− λDα

0+x (t)
)
, t ∈ [0, T ] .

(3.2)
Using the Proposition 2.11, equivalence (3.2) becomes as follows

x ∈ Eλ ⇐⇒ x (t) = JAµ
(µ
λ

(
x (t)− λDα

0+x (t)
)

+
(
1− µ

λ

)
x (t)

)
⇐⇒ x (t) = JAµ

(
x (t)− µDα

0+x (t)
)
, t ∈ [0, T ]

⇐⇒ Dα
0+x (t) = −Aµ

(
x (t)− µDα

0+x (t)
)
, t ∈ [0, T ]

⇐⇒ x ∈ Eµ.

This completes the proof. �
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In the following hypothesis, we will show that problems (Pλ) and (P) have
the same set of solutions.

Proposition 3.4. Let A : R ⇒ R be a maximal monotone operator. Then,
for all λ > 0 and t ∈ [0, T ] , we have

Dα
0+x (t) ∈ −Ax (t) ⇔ Dα

0+x (t) = −Aλ (x (t)− λDα
0+x (t)) .

Proof. For all λ > 0 and t ∈ [0, T ] , we have

Dα
0+x (t) ∈ −Ax (t) ⇐⇒ −λDα

0+x (t) ∈ λAx (t)
⇐⇒ x (t)− λDα

0+x (t) ∈ (id + λA)x (t)
⇐⇒ x (t) = JAλ

(
x (t)− λDα

0+x (t)
)

⇐⇒ −λDα
0+x (t) = −λDα

0+x (t) + x (t)
−JAλ

(
x (t)− λDα

0+x (t)
)

⇐⇒ Dα
0+x (t) = −Aλ

(
x (t)− λDα

0+x (t)
)
.

�

Theorem 3.5. If β > Γ(α)
Γ(2α)T

α, then problem (P) has unique solution in the

space C1−α([0, T ] ,R).

Proof. If β > Γ(α)
Γ(2α)T

α, then from Theorem 3.1, the problem (Pλ) has unique

solution x (·) in the space C1−α([0, T ] ,R). From Proposition 3.4, we get x (·)
is a solution of (P) in the space C1−α([0, T ] ,R). �

3.2. Existence and uniqueness of solutions to differential inclusions
with maximal monotone operator. In this subsection, we consider A :
R ⇒ R is a maximally monotone operator. We will prove the existence of the
solution and its uniqueness in the next case.

For all ε > 0, we consider the following fractional differential equation{
Dα

0+x (t) = −Aε (x (t)) a.e. t ∈ (0, T ] , α ∈ (0, 1) ,
t1−αx (t)

∣∣
t=0

= x0 ∈ R∗. (3.3)

To show the existence and uniqueness of solutions of (3.3), we have proved an
equivalence with the following disturbed problem

(Pλ,ε)
{
Dα

0+x (t) = −Aλ+ε

(
x (t)− λDα

0+x (t)
)

a.e. t ∈ (0, T ] , α ∈ (0, 1) ,
t1−αx (t)

∣∣
t=0

= x0 ∈ R∗,

for all λ, ε > 0.

Theorem 3.6. If ε > Γ(α)Tα

Γ(2α) , then for all λ > 0, there exists a unique solution

of problem (Pλ,ε) in C1−α ([0, T ] ,R) .
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Proof. We define the operator Φ : C1−α ([0, T ] ,R)→ C1−α ([0, T ] ,R) by

(Φx) (t) = x0t
α−1 − 1

Γ (α)

∫ t

0
(t− s)α−1 g (s) ds, t ∈ [0, T ] ,

where g : [0, T ]→ R is a function satisfying the functional equation

g (t) = Aλ+ε (x (t)− λDα
0+x (t)) .

By Lemma 2.5, the fixed points of operator Φ are solutions of (Pλ,ε) .
Since A : R ⇒ R is a maximal monotone operator, Aλ+ε : R → R is

1
λ+ε−Lipschitz, singular and domAλ+ε = R, we can follow the same steps in

Theorem 3.1, or ε > Γ(α)Tα

Γ(2α) , that is, Γ(α)Tα

εΓ(2α) < 1 thus, Φ is a contraction. By

Banach fixed point theorem, we get that Φ has a unique fixed point which is
a unique solution of the problem (Pλ,ε). �

In the next proposition, we prove that the solution of problem (Pλ,ε) is not
depend by λ. For all λ, ε > 0, we define the set

Eλ,ε={x ∈ C1−α ([0, T ] ,R) | Dα
0+x (t)=−Aλ+ε (x (t)− λDα

0+x (t)) ,t ∈ [0, T ]} .

Proposition 3.7. For all λ, µ > 0, we have Eλ,ε = Eµ,ε.

Proof. Let λ, µ > 0. We have,

x ∈ Eλ,ε ⇐⇒ − (λ+ ε)Dα
0+x (t) = x (t)− λDα

0+x (t)
−JAλ+ε

(
x (t)− λDα

0+x (t)
)
, t ∈ [0, T ]

⇐⇒ JAλ+ε

(
x (t)− λDα

0+x (t)
)

= x (t) + εDα
0+x (t) , t ∈ [0, T ] .

Using the Proposition 2.11, we get x ∈ Eλ,ε is equivalent to

JAµ+ε

(
µ+ε
λ+ε

(
x (t)− λDα

0+x (t)
)

+
(

1− µ+ε
λ+ε

)
JAλ+ε

(
x (t)− λDα

0+x (t)
))

= x (t) + εDα
0+x (t) .

(3.4)
So (3.4) is equivalent to,

JAµ+ε

(
µ+ε
λ+ε

(
x (t)− λDα

0+x (t)
)

+
(

1− µ+ε
λ+ε

) (
x (t) + εDα

0+x (t)
))

= x (t) + εDα
0+x (t) , t ∈ [0, T ]

⇐⇒ JAµ+ε

(
x (t)− µDα

0+x (t)
)

= x (t) + εDα
0+x (t) , t ∈ [0, T ]

⇐⇒ x ∈ Eµ,ε.

This completes the proof. �

Theorem 3.8. If ε > Γ(α)Tα

Γ(2α) , then there exists a unique solution of problem

(3.3) in C1−α ([0, T ] ,R) .
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Proof. If ε > Γ(α)Tα

Γ(2α) , by Theorem 3.6, the problem (Pλ,ε) has unique solution

in C1−α ([0, T ] ,R) . Since Aε is a maximal monotone operator, by Proposition
2.11 and Proposition 3.4, we find

Dα
0+x (t) = −Aλ+ε

(
x (t)− λDα

0+x (t)
)

⇐⇒ Dα
0+x (t) = − (Aε)λ

(
x (t)− λDα

0+x (t)
)

⇐⇒ Dα
0+x (t) = −Aεx (t) .

Then for all ε> Γ(α)Tα

Γ(2α) , the problem (3.3) has unique solution in C1−α([0, T ] ,R) .

�

Conclusion: If the goal of the paper is to prove the existence and uniqueness
of solutions for a problem without imposing any conditions, it indicates that
the authors are aiming for a very general result that applies broadly. This
can be a challenging task, as proving existence and uniqueness without any
conditions often requires a deep understanding of the mathematical structures
involved and potentially involves more abstract or advanced techniques.

Acknowledgments: The authors would like to thank the anonymous referee
for his valuable comments.
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