In recent years, the need for multi-stage gear drives which highly reduce output speed has been increased. However, the design of multi-stage gear drives has been carried out by a limited number of experts. The consideration for the direction of input and output axes also makes their design very difficult. The purpose of this study is to develop an algorithm for automatically generating complex multi-stage gear drives and to implement a design supporting system for multi-stage gear drives. There are 4 stages in the proposed algorithm, and major design parameters, such as the direction of input and output axes, reduction ratio, etc. are set up in the first stage. In the second stage, all mechanisms are generated, and various rules are applied to select feasible mechanisms. In the third stage, the gear ratio of each stage is divided from total gear ratio. Next, the specifications of gears for feasible mechanisms are calculated and their bending strength and surface durability are estimated. In the forth stage, appraised indexes are calculated and provided to support the estimation of the generated gear drives.