KIEE International Transaction on Systems and Control
The Korean Institute of Electrical Engineers
- Monthly
- /
- 1598-3595(pISSN)
Volume 12D Issue 1
-
In this study, we propose the new color-based image retrieval technique using the representative colors of images and their ratios to a total image size obtained through color segmentation in HSV color space. Color information of an image is described by reconstructing the color histogram of an image through Gaussian modelling to its representative colors and ratios. And the similarity between two images is measured by histogram intersection. The proposed method is compared with the existing methods by performing retrieval experiments for various 1280 trademark image database.
-
In this study, fur the shape-based image retrieval, a method using local differential invariants is proposed. This method calculates the differential invariant feature vector at every feature point extracted by Harris comer point detector. Then through vector quantization using LBG algorithm, all feature vectors are represented by a codebook index. All images are indexed by the histogram of codebook index, and by comparing the histograms the similarity between images is obtained. The proposed method is compared with the existing method by performing experiments for image database including various 1100 trademarks.
-
We propose a new category of neurofuzzy networks- Self-organizing Neural Networks(SONN) with fuzzy polynomial neurons(FPNs) and discuss a comprehensive design methodology supporting their development. Two kinds of SONN architectures, namely a basic SONN and a modified SONN architecture are dicussed. Each of them comes with two types such as the generic and the advanced type. SONN dwells on the ideas of fuzzy rule-based computing and neural networks. Simulation involves a series of synthetic as well as experimental data used across various neurofuzzy systems. A comparative analysis is included as well.
-
In this paper, a new design methodology of the fuzzy controller is presented. The performance of the fuzzy controller is sensitive to the variety of scaling factors. The design procedure is based on evolutionary computing (more specifically, a genetic algorithm) and estimation algorithm to adjust and estimate scaling factors respectively. The tuning of the soiling factors of the fuzzy controller is essential to the entire optimization process. And then we estimate scaling factors of the fuzzy controller by means of two types of estimation algorithms such as HCM (Hard C-Means) and Neuro-Fuzzy model[7]. The validity and effectiveness of the proposed estimation algorithm for the fuzzy controller are demonstrated by the inverted pendulum system.
-
In this paper, we would study the applicability of neural networks to the recognition process of Korean stenographic character image, applying the classification function, which is the greatest merit of those of neural networks applied to the various parts so far, to the stenographic character recognition, relatively simple classification work. Korean stenographic recognition algorithms, which recognize the characters by using some methods, have a quantitative problem that despite the simplicity of the structure, a lot of basic characters are impossible to classify into a type. They also have qualitative one that It Is not easy to classify characters fur the delicacy of the character farms. Even though this is the result of experiment under the limited environment of the basic characters, this shows the possibility that the stenographic characters can be recolonized effectively by neural network system. In this system, we got 90.86% recognition rate as an average.
-
In this paper, the infinite time optimal regulation problem for weakly coupled bilinear systems with quadratic performance criteria is obtained by a sequence of algebraic Lyapunov equations. This is the new approach is based on the successive approximation. In particular, the order reduction is achieved by using suitable state transformation so that the original Lyapunov equations are decomposed into the reduced-order local Lyapunov equations. The proposed algorithms not only solve optimal control problems in the weakly coupled bilinear system but also reduce the computation time. This paper also includes an example to demonstrate the procedures.
-
This paper focuses on the asymptotic stability of a class of neutral linear systems with mixed time-varying delay arguments. Using the Lyapunov method, a delay-dependent stability criterion to guarantee the asymptotic stability for the systems is derived in terms of linear matrix inequalities (LMIs). The LMIs can be easily solved by various convex optimization algorithms. Two numerical examples are given to illustrate the proposed methods.
-
In the recent years neural networks have fulfilled the promise of providing model-free learning controllers for nonlinear systems; however, it is very difficult to guarantee the stability and robustness of neural network control systems. This paper proposes an adaptive neural network control for robot manipulators based on the radial basis function netwo.k (RBFN). The RBFN is a branch of the neural networks and is mathematically tractable. So we adopt the RBFN to approximate nonlinear robot dynamics. The RBFN generates control input signals based on the Lyapunov stability that is often used in the conventional control schemes. The saturation function is also chosen as an auxiliary controller to guarantee the stability and robustness of the control system under the external disturbances and modeling uncertainties.