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Adaptive Neural Network Control for Robot Manipulators

Min-Jung Lee and Young-Kiu Choi

Abstract - In the recent years neural networks have fulfilled the promise of providing model-free learning controllers for nonlinear
systems; however, it is very difficult to guarantee the stability and robustness of neural network control systems. This paper pro-
poses an adaptive neural network control for robot manipulators based on the radial basis function network (RBFN). The RBFN is
a branch of the neural networks and is mathematically tractable. So we adopt the RBFN to approximate nonlinear robot dynamics.
The RBFN generates control input signals based on the Lyapunov stability that is often used in the conventional control schemes.
The saturation function is also chosen as an auxiliary controller to guarantee the stability and robustness of the control system un-

der the external disturbances and modeling uncertainties.
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1. Introduction

Robot manipulators commonly used as industrial auto-
matic elements are systems with high nonlinearities often
unknown and time-varying. To design a controller for ro-
bot manipulators, it is necessary to have the exact trajec-
tory tracking performance for reference inputs and the ro-
bustness for the external disturbances. The conventional
feedback controllers such as PID controllers, are com-
monly used in the field of industries because their control
architectures are very simple and easy to implement. How-
ever, when these conventional feedback controllers are
directly applied to nonlinear systems, they suffer from the
poor performance and low robustness due to the unknown
nonlinearities and the external disturbances. To deal with
the unknown nonlinearities and external disturbances, vari-
ous control strategies are proposed in the forms of the
automatic tuning of PID control, variable structure control,
feedback linearization, adaptive control, intelligent control,
etc [1-5].

For some decades, adaptive control schemes started in
the early 1950s are applied to the various nonlinear sys-
tems since these control schemes can be automatically ad-
Jjusting the controller parameters in the face of changing
system dynamics. On-line adaptation laws are used to es-
timate the unknown parameters of the system, and appro-
priate controllers are designed to control the system in or-
der to satisfy the desired performance. In spite of the im-
pressive applications made to several practical problems
and the sophisticated mathematical machinery underlying
the development of adaptive control algorithms, an essen-
tial characteristic of these procedures is their model de-

Manuscript received; Sep. 12, 2001 accepted: Jan. 18, 2002.

Min-Jung Lee is with Dept. of Electrical Eng., Pusan National Uni-
versity, Pusan, Korea.

Young-Kiu Choi is with the Research Institure of Computer, Informa-
tion and Communication. He is also with School of Electrical and Com-
puter Eng., Pusan National University, Pusan, Korea.

pendence, i.e., the requirement for explicit a priori speci-
fied model structures [6].

Intelligent control approaches such as neural networks
and fuzzy inference systems do not require mathematical
models and have an ability to approximate nonlinear sys-
tems. With these features of intelligent control theory,
many researchers have been attempting to use intelligent
control approaches to represent complex plants and con-
struct advanced controllers such as the model reference or
direct adaptive controllers [7,8]. Especially, in the recent
years researches on ncural networks have been pursued to
provide model-free leamning controllers for a class of
nonlinear systems [9-17]. Narendra and Parthasarathy [9]
proposed the dynamic back-propagation algorithm for
identification and control employing the multilayer percep-
tron (MLP). Chen and Khail [11] considered the MLP in
the adaptive control of feedback, linearizable minimum
phase plants represented by an input-output model.
Karakasoglu et al. [6) used the MLP for the on-line adap-
tive control of complex dynamical systems characterized
by an interconnection of several subsystems. Revithakis
and Christodoulou [12] considered the dynamical identifier
to perform identification with the MLP and constructed
dynamic state feedback controller. Lewis et al.[13] pro-
posed a neural net robot controller. Choi et al. [14] pre-
sented a neural network compensator for conventional con-
trol systems to improve the control performance without
hardware modifications. Meantime the radial basis function
network (RBFN) is also applied to control dynamic sys-
tems [15-17]. The structure of the RBFN is simpler than
that of the MLP, so the learning speed of the RBFN is gen-
erally faster than that of the MLP. Also the RBFN is
mathematically tractable.

Zhihong et al. [15] used the RBFN for a robust adaptive
tracking control scheme for a class of nonlinear systems.
Instead of learning directly the system uncertainty, the
RBFN is used to adjust adaptively the gain of the sliding
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mode. Patino and Liu [16] developed a neural network
controller based on model reference adaptive control. The
nonlinear part of the controller, which compensates for the
plant nonlinearity, can be implemented by either the RBFN
or a feedfoward neural network. And Seshagiri and Khail
[17] presented an adaptive output feedback control scheme
for the output tracking of a class of continuous-time
nonlinear plants. The RBFN is used to compensate adap-
tively for the plant nonlinearities.

In the above researches related to the RBFN, plants are
assumed to be single-input-single-output systems, both
centers and widths of Gaussian functions in the RBFN are
given and fixed, and their theoretical results are verified
through simulation studies for simple systems.

This paper proposes another adaptive neural network
controller based on the RBFN. It deals with tracking con-
trol problems for robot manipulators that are multi-input-
multi-output systems, and the adaptation laws for Gaussian
functions are also derived to adjust the centers and widths
of the RBFN in real-time. The robot dynamics expressed in
terms of the filtered tracking errors is the nonlinear func-
tion. The RBFN is applied to approximate the nonlinear
function. The adaptation laws are derived to guarantee the
stability of the control system based on the Lyapunov
method that is often used in the conventional adaptive con-
trol scheme. Also, to guarantee the stability and robustness
of control system under the existence of nonlinearities and
external disturbances, a saturation function is employed as
an auxiliary controller.

Finally, the proposed adaptive neural network control
scheme is applied to the SCARA-type robot manipulator.
We can find experimentally the validity of the adaptive
neural network control scheme by comparing with other
control strategies.

2. Dynamics and Structural Properties of Robot
Manipulators

The dynamics of an n-link robotic manipulator may be
expressed in the Euler-Lagrangian form [1,2,13].

D(@)g+Cq.9)q+G@+ 1, =t (1)

where g R is the joint variable vector, D(g)e R™ is
the inertial matrix, C(g,¢)g e R” is the Coriolis/centrifugal
force, and G(g)e R" is the gravity vector. reR" denotes
the vector of applied joint torques and 7, e R” is the dis-
turbance vector which could represent modeling errors.

In general, robot dynamics have the following properties.

The properties hold for all rigid-link manipulators [1,2,13].

Property 1: The inertial matrix D(q) is symmetric and
positive definite, and there exist scalars d, and 4, such
that

d,1<D(g)<d,I.

Property 2: The Coriolis/centrifugal force Clq,¢)g is
bounded by ¢, (g))g|" with c,(g)e C'(S). S is a simply con-
nected compact set of R”.

Property 3: The matrix D-2C is skew-symmetric, that
is, the matrix is satisfied with 7 (D—2C)x =0 VxeR".
Strongly related to the skew symmetry is the passivity.

Property 4: The unknown disturbance satisfies |z, ] <5,
with b, a positive constant bound.

3. Radial Basis Function Networks

The locally tuned and overlapped receptive field is a
well-known structure that has been studied in regions of
the cerebral cortex, visual cortex, and so on. Based on the
biological receptive fields, Moody and Darken proposed a
network structure, namely, a RBNF that employs local re-
ceptive fields to perform function mapping. The RBNF is
well known in the field of approximation of nonlinear
function and pattern recognition. Especially the RBFN has
a faster convergence property than the multilayer percep-
tron because the RBFN has a simple architecture. The
RBFN also has a similar feature to the fuzzy inference sys-
tem. First, the output value is calculated using the weighted
sum or weighted average method. Second, the number of
hidden layer’s nodes of the RBFN is the same as the num-
ber of if-then rules in the fuzzy inference system. Third,
the receptive field functions of the RBFN are similar to the
membership functions of fuzzy inference system’s premise
part. Fig. 1 shows the architecture of the RBFN with A/
receptive field units, where the j-th receptive field unit is
usually a Gaussian function or a logistic function [17, 18].

Fig. 1 Architecture of the RBFN with M receptive field units.
If we select Gaussian function as the receptive field unit
and use the weighted sum method to calculate the output of
the RBFN, then its output is
M
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where M and L are the numbers of hidden nodes and output
nodes, respectively. Note that ¢, is the weight connecting
the j-th hidden node to the i-th output node, ¢,(x) is the j-th
Gaussian function, m,eR" is the center vector, and
o; € R" is the j-th standard deviation.

In this paper, the RBFN is used to design an adaptive
controller because the structure is simpler than the multi-
layer perceptron. As the design of an adaptive control, the
RBNF is used as a nonlinear approximator. If the nonlinear
function in the forms of (1) is approximated using the
RBFN, the approximated system model can be described as

f=c"®+e @
wheref:[fl £ f/,]Ta (D=[¢1 #, ¢M]T’
Cu G Gy
el = C?l Cn CZ.M , and g:[gl g, - gL]T_
Cu € vt Oy

In (4), an approximation error vector £ exists because
we just consider the finite dimensional hidden nodes of the
RBFN. But approximation error can be made a very small
value. We can see that the norm value of & is bounded by
a constant value such that

el ®

where ””1 denotes the 1-norm.

4. Adaptive Neural Network Controller
4.1 Architecture

This paper attempts to connect neural networks to adap-
tive control schemes in order to solve the difficult prob-
lems such as the stability in neural network control systems
and the requirement of the model structure in the adaptive
control scheme. We choose the RBFN since its architecture
is simple and mathematically tractable. Fig. 2 shows the
block diagram of the adaptive neural network controller.
The proposed adaptive neural network controller consists
of two parts: a nonlinear function approximator and an
auxiliary controller. In the nonlinear function approximator,
the RBFN represents the nonlinear robot dynamics written
in terms of the filtered tracking errors. The adaptation laws
for updating the weights of the RBFN are derived to guar-
antee the stability of control system. This approach is
somewhat different from the conventional adaptive control
schemes because the conventional adaptive control
schemes commonly use the linear reparameterization in the
unknown terms of robot manipulators. Next, we have the
auxiliary controller to guarantee the stability and robust-
ness under the existence of nonlinearities and external dis-
turbances.

4.4 Iy
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Fig. 2 Block ‘diagram of the adaptive neural network con-
troller.

4.2 Stability and Robustness

To derive the adaptation law of the RBFN, the nonlinear
function ofs) in Fig. 2 is selected to be the signum function.
And then the form of ofs) is extended to cover the satura-
tion function. Now consider the robot dynamics in the form
of (1).

If the reference trajectory, ¢, € R”, is given, the track-
ing error g is defined by

9=9.-9- (©6)

The filtered tracking error s and the control input ¢ are
also defined as below.

s=q+AG=4,—¢ Q)
7 =¢"®(x)+ K sgn(s) (®

where x=[4,4.4,,4,], 4, =4, +AG, A=A" >0, and K is
diagonal and positive definition.

Fig. 2 depicts (8). According to the Lyapunov stability
analysis, the system is stable if the Lyapunov function is
positive-definite and its derivative is negative semi-definite.
Therefore, to guarantee the stability of the total control
system, a positive-definite Lyapunov function candidate is
selected as follows:

V=45 sl T S T ) 6T ) ©)

where ¢ =c" ¢ is weight matrix error between the optimal
weight matrix ¢’ and the estimated weight matrix ¢ of the
RBFN in (8). Also m=m" - and §=0" -6 are the cen-
ter vector error and standard deviation vector error in (3),
respectively. T, T,, and I, are diagonal, symmetric and
positive-definite matrices.

Differentiating (9) with respect to time, we get

V= STDs'+%sTDs—tr(ETF,"'é)—tr(ﬁTF{Ir;z)—tr(ETF;l&).
(10)

If we differentiates s with respect to time, the robot dy-
namics (1) may be written in terms of the filtered tracking
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errors as follows:
Di=Dj, +Cj, +G+r,~Cs—7. (11)
Substituting (11) into (10), we have
v =s'[Dj, +Cq, +G+1, —r]+%sr(D—ZC)?—tr(ETF,'Ié)
—tr(rTzTF;‘;ﬁ)—tr(ETr;‘&). (12)

Using the property 3: ST(D—Zc)s =0 VseR", (12)
becomes

v =s"[{Dg, +Cq, +Gl+r, ~ r]—zr(ETfl”‘é)—tr(rﬁrl“z“rh)
—ulgTré). (13)

To approximate the nonlinear robot dynamics using the
RBFN, let us define a function as below:

flg.4.4,,d,)=Dlg)i, +Clg,4)d, +Glg)- (14)

Approximating the above function using the RBFN with
finite hidden nodes shown in (4), we have

fla,4.4,,4,)= <" ®(9.4.4,.4. )+ ¢ (15)

Substituting (8) and (15) into (13) yields

V=s"{err, - K sgals)+ o7 (@™ -TE ol )
—vlgTrsé). (16)

Since it is desirable to have ¥ at least negative semi-
definite, let us have the following adaptation laws:

¢=T,0(q,4,4,,4,)s a7
=T s, (18)
é=-T,6 (19)
Then (16) becomes
V<3 bl fleved, - o {a (m-7)}

5 (0n-5))] o)

where K, is the i-ith element of the diagonal matrix K .
From the property of Frobenius norm,

ol o~ )}= ('), -l <Pl
ol5"o" - 8)}=(z.07), -Ief; <ol |

Substituting (21) and (22) into (20) we get

y S ~ M a ’ m iax
V&;%%wwwwWL—;)hr

+@%~ﬁ?f"ﬁ?ﬂ @9

-l @D

F

*
(o

,F - “&”i‘ .(22)

where m,_, and o, are the maximum values of the Fro-
benius norm of center and standard deviation vector in the
RBFN.

The approximation error term ¢ is limited by the upper
bound &, as shown in (5) and the disturbance term ¢, by
an upper bound b, . If gain X, is sclected to satisfy the
following inequality:

2 2

K.zm*zai+0—“";i+(gN+bd) Vi=i2,,m (24)

then we have
7 <0. 25)

From (9) and (25), the control system is stable based on
the Lypunov stability.

4.3 Extension to the Saturation Function

In the previous section, the stability and robustness are
guaranteed for the control system with (8). Form (8), the
control input has the signum function. But the signum
function causes a chattering problem. This chattering may
give robot manipulators critical damages since it involves
extremely high control activity, and further may excite
high-frequency dynamics neglected in the course of model-
ing. In order to reduce the chattering, we extend the
mathematical framework of the previous section to the
saturation function. A deadzone compensation is also in-
cluded because the deadzone effect exists in real nonlinear
systems and it makes the system performance deteriorated.
Fig. 3 shows the saturation function with a deadzone com-
pensation. The saturation function may be represented as a
multiplication of the signum function and p(]si]) , Le,
sat(x,.) = Sgn(si) : p(xi) .

When the saturation function is used (8) can be rewritten by

r=¢"d(x)+ K sat(s) . (26)

To prove the stability and robustness of the control sys-
tem, the same Lyapunov function candidate as that in (9) is
defined and is rewritten as bellow:

v =L Ds+0rle T h o T )4 0 (6TES S @7)
Differentiating (27) with respect to time, we get

V=s"(g+7,)-s"K sat(s) + tr{c"’(d)sr - F,“é)}

— ol r ) - 3T 6 28)

sat(s) sen(s,)
Y —

deads
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Saturation function =
considering a deadzone

Fig. 3 Saturation function with a deadzone compensation.

Signum function X o)
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Above equation is almost the same as (16). On the other
hand, s”K sa(s) can be rewritten in the component base as
follows:

s"K sat(s) ZK s -sgn(s Q ) ZK |s|pq ’)
(29)
1 if Is.il 26
oli)- (I_L;")ihpm if 0<|s,|<s. (30)
From (28),(29), and (30) we have
V= €+Td QSi|)+tr%T(CDST —F,’[c;}
—tr(m r; m)—tr(o- r;‘a*). (31)

If the adaptation laws are the same as those defined in
(17), (18), and (19), then

7 <3 s leveal -Kip s el
{5 (0" -5 )}]. (32)
From Fig. 3, we have p . < p(s,/)<1. The lower bound

of the function pﬂsi|) is a positive constant, p . There-
fore we get

Vﬁgnsil {“g+rd“] -K.prin +tr{ ﬁr(m‘ —rﬁ)}
+or{& (o"-5)]] 33)

From the properties of Frobenius norm, (21) and (22),

Si {Kipmin
~i Gmax z o’l’%‘lax 34
o[l - 2| - s (4)

If the gain is selected to satisfy the following inequality:

o~ mmax ’ mrf]ax
oral i, -g | e

Vs-i{

2 2

m (o2
max 7 max +(€N +bd)
K >3 4 Vizi2,,m (35)
P min
then
V<o0. (36)

Finally, if the control gains are selected to satisfy the
inequality (35), then the derivative of the Lyapunov func-
tion with respect to time becomes negative semi-definite.
So, the control system is stable.

5. Experimental Result and Discussions
5.1 Description of the Robot System

The 4-link SCARA-type robot manipulators shown in
Fig. 4 is employed as a testbed in this paper. The joints 1
and 2 of the robot manipulator are chosen for experiment.
Fig. 5 shows the hardware configuration of robot control
system. It consists of an IBM PC, a DSP board to calculate
the control inputs online, a DIO board to acquire the error
signals and position data, and a D/A board to send com-
mand signals to the robot manipulator. The proposed con-
trol algorithm is implemented using the C language.

Fig. 4 SCARA-gype robot manipulator.

Dowaload Torque command
contro]

program
—

Current command
DAC for BLDC motors

card

Dsp
processor

< board
DI
Positign card
data

Servo signal & position data

Interface
board

Servo
drive

Position data from RDC
& error signals

IBM PC DSP System SCARA robot

Fig. 5 Hardware configuration of the robot control system.
5.2 Experimental Results

The adaptive neural network controller is compared with
two other controllers: the PID controller and the neuro-
controller using the MLP [2]. We obtained the PID control-
ler gains by ES such as K, =2423, K, =727,
Kp =060, K,, =399, K,, =834, and K, =1.78
for the joints 1 and 2. And in order to experiment the
neuro-controller using the MLP, we adopted two and four
neurons in the input layer and hidden layer, respectively.
The error-backpropagation algorithm is used as an updat-
ing algorithm for the neuro-controller using the MLP. The
proposed control inputs (26) (17), (18), and (19) are used
for the experiment. Control parameters are given in Table I.
The numbers of neurons in the input layer and hidden layer
are eight and fifteen, respectively. The sampling time is set
to be 5[ms]. Four different experiments are done to con-
sider the performance under the various environments. The
first case is for the sinusoidal reference trajectory with the
frequency, @ = 1.88[rad/sec]. The second case is for the
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reference trajectory two times faster than the first case. The
third case is for 4[kg] load with the same frequency as the
second case. Finally, the last case is for the circular refer-
ence trajectory in the Cartesian space.

Table 1 Control parameters for the adaptive neural net-
work controller.

Parameters Values

A [8, 9]

K Diag[1.8, 1.9]
I 0.7x1

I, 0.001xI

I, 0.001xI

) Diag[0.5, 0.5]
Pmin 0.3

First, the reference input trajectories are defined as
4/ ()= 0.4cos(1.88)[rad] and ¢ ()= 0.4{sin(1.88¢)+1}{rad] for
the joints 1 and 2, respectively. Fig. 6 shows the tracking
errors of the PID controller, the neuro-controller using the
MLP, and the proposed adaptive neural network controller.
The neuro-controller using the MLP and the proposed con-
troller can make the tracking errors reduce during leaming
process since both controllers have the learning ability. But
the proposed controller has the faster reduction rate in
tracking errors than the neuro-controller using the MLP.
Second, another reference input trajectories are defined as
g/ ()=0.4c0s(3.76t)[rad] and g} (r)=0.4{sin(3.76¢)+1}[rad]
for the joints 1 and 2, respectively. Fig. 7 shows the track-

- ing errors of the three controllers mentioned above. The
performance of the PID controller is deteriorated since the
speed of the reference trajectories become two times faster.
However, the tracking errors of the neuro-controller using
the MLP and the proposed controller become reduced as
the time goes on. Third, we have 4[kg] load with the same
reference input trajectories as those in the second case. Fig.
8 describes the tracking errors. Due to the learning process,
the neuro-controller using the MLP and the proposed con-
troller are less sensitive to the disturbance than the PID
controller.

Finally, a circle reference trajectory in the Cartesian
space shown in Fig. 9 is applied to the manipulator. Fig. 10
shows the tracking errors of the controllers in the Cartesian
space. The tracking errors of the proposed adaptive neural
network controller are reduced very fast.

Experimental results mentioned above indicate that the
proposed controller is very adaptable to the environmental
changes and is more robust than PID controller and the
neuro-controller using the MLP.

Tracking emor [rad]

[
Time [sec}
(a)

Tracking error [rad]

Timefsec]

(b}
PILD controller
- Neuro- contralier using the MLP
Proposed controlier

Fig. 6 Tracking errors under reference inputs with
@ =1.88[rad / sec]. (a) Joint 1. (b) Joint 2.

0.08

Tracking ercor [rad)

Tracking error [rad]

Time{sec]
(b}
- PID controller

-~ Neuro- controlier using the MLP
Propased controller

Fig. 7 Tracking errors under reference inputs with
@ =3.76{rad / sec]. (a) Joint 1. (b) Joint 2.

Tracking error |rad]

Tracking error [rad]

Timefsec]

(b)

PID controlier
-~ Neuro- controller using the MLP
Proposed controller

Fig. 8 Tracking errors under disturbance torque. (a) Joint 1.
(b) Joint 2.

Y axis [m]

X axis [m]

Fig. 9 Circle trajectory in the Cartesian space.
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X-axis error [m}

Y-axis error [m]

(b)

Fig. 10 Tracking errors for the circle trajectory in the Car-
tesian space. (a) Joint 1. (b) Joint 2.

6. Conclusions

In this paper, we propose an adaptive neural network
controller for robot manipulator to solve the problems gen-
erally known in the neural network controller, i.e., how to
guarantee the stability and robustness of the neural network
control system. The structure of the adaptive neural net-
work controller is composed of two parts. The first part is
the RBFN approximator. The RBFN generates control in-
put signals based on the Lyapunov method that is often
used in the conventional adaptive control method.

To build the first part of the adaptive neural network
controller, the robot dynamics are formulated as nonlinear
functions in terms of the filtered tracking errors, and the
RBFN is employed to approximate the nonlinear functions.
This approach is somewhat different from the conventional
adaptive control schemes that have the linear reparameteri-
zation of robot dynamics. The adaptation laws of the
RBFN are derived to guarantee the stability of the control
system based on the Lyapunov method. The second part is
an auxiliary controller. The auxiliary controller consists of
the saturation function in order to guarantee the stability
and robustness of the control system under the existence of
disturbance and modeling errors.

Finally, the adaptive neural network controller is applied
to the SCARA-type robot manipulator to show the validity

of the controller by comparing with other control strategies.
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