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Advanced Self-organizing Neural Networks with Fuzzy Polynomial
Neurons : Analysis and Design

Sung-Kwun Oh and Dong-Yoon Lee

Abstract - We propose a new category of neurofuzzy networks- Self-organizing Neural Networks(SONN) with fuzzy poly-
nomial neurons(FPNs) and discuss a comprehensive design methodology supporting their development. Two kinds of SONN
architectures, namely a basic SONN and a modified SONN architecture are dicussed. Each of them comes with two types
such as the generic and the advanced type. SONN dwells on the ideas of fuzzy rule-based computing and neural networks.
Simulation involves a series of synthetic as well as experimental data used across various neurofuzzy systems. A comparative

analysis is included as well.
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1. Introduction

The challenging quest for constructing models of sys-
tems that come with significant approximation and gener-
alization abilities as well as are easy to comprehend has
been within the community for decades. While neural net-
works, fuzzy sets and evolutionary computing have aug-
mented a field of modeling quite immensely, they have
also given rise to a number of new methodological issues
and increased awareness about tradeoffs one has to make in
system modeling. When the dimensionality of the model
goes up, so do the difficulties. In particular, when dealing
with high-order nonlinear and multivariable equations of
the model, we require a vast amount of data for estimating
all its parameters. The Group Method of Data Handling
(GMDH)[1] is one of the approaches that help alleviate the
problem. GMDH is an analysis technique for identifying
nonlinear relationships between system's inputs and out-
puts. The networks of polynomials built with GMDH have
fewer nodes than standard artificial neural networks(ANN),
but their nodes are more flexible[2]. The GMDH algorithm
is carried out to generate an optimal architecture through a
successive generation of both the nodes at each layer and
the layers themselves by using the partial descriptions of
the data.

Fuzzy sets emphasized the aspect of transparency of the
models and a role of a model designer whose prior knowl-
edge about the system may be very helpful in facilitating
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all identification pursuits. On the other hand, to build mod-
¢ls of high approximation capabilities, there is a need for
advanced tools. The art of modeling is to reconcile these
two tendencies and find a workable synergistic environ-
ment. In this paper, we study a new neurofuzzy topology,
called a Self-organizing Neural Network(SONN). SONN is
a network resulting from the fusion of the extended GMDH
algorithm and a fuzzy inference system. We introduce a
complete learning scheme, discuss a way of growing the
SONN and provide with a series of comprehensive ex-
perimental studies.

2. The SONN with FPNs

We introduce a fuzzy polynomial neuron(FPN). This
neuron, regarded as a generic type of the processing unit,
dwells on the concepts of fuzzy sets and neural networks.
Fuzzy sets realize a linguistic interface by linking the ex-
ternal world - numeric data with the processing unit. Neu-
rocomputing manifests in the form of a local polynomial
unit realizing a nonlinear processing. The FPN encapsu-
lates a family of nonlinear “if-then” rules. When arranged
together, FPNs build a Self-organizing Neural Network
(SONN). In this Fig. 1, the FPN consists of two basic func-
tional modules. The first one, labeled by F, is a collection
of fuzzy sets (here {A;} and {By}) that form an interface
between the input numeric variables and the processing
part realized by the neuron. Here x4 and x, denote input
variables. The second module (denoted here by P) is about
the function — based nonlinear (polynomial) processing.
This nonlinear processing involves some input variables (x;
and x;).

The FPN realizes a family of multiple-input single-
output rules. Each rule, refer again to Fig. 1, reads in the
form
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Fig. 1 A general topology of the generic FPN module (F:
fuzzy set-based processing part, P: the polynomial
form of mapping)

if x, is A and x, is By then y is Py(x;, xj, ay) §))

where ay is a vector of the parameters of the conclusion
part of the rule. Alluding to the input variables of the FPN,
especially a way in which they interact with the two func-
tional blocks there, we use the notation FPN (x,, Xg; X;, X;).
The processing of the FPN is governed by the following
expressions that are in line of the rule-based computing
existing in the literature.

a) The activation of the rule “K” is computed as an and-
combination of the activations of the fuzzy sets stand-
ing in the rule. This combination of the subconditions
is realized through any t-norm with the minimum and
product. Denote the resulting activation level by O -.

b) The activation levels of the rules contribute to the out-
put of the FPN computed as a weighted average of
the individual condition parts(functional transforma-
tions) Px (K=(1,k))

all_rules all rules all_rules (2)

z= z WP (x;,x5,a,) Z M = Z P (%, %5, 3)
= r= =

3. The topology of the SONN

Proceeding with the overall SONN architecture, see Fig.
2., essential design decisions have to be made with regard
to the number of input variables and the order of the poly-
nomial occurring in the conclusion part of the rule. Follow-
ing these criteria, we distinguish between two fundamental
types of the SONN architectures. Moreover, for each type
of the topology we identify two cases.

(a) Basic SONN architecture — The number of the input
variables of the fuzzy rules in the FPN node is kept
the same in each layer of the network.

Case 1. The order of the polynomial in the conclusion
part of the fuzzy rules is the same in all the
nodes of each layer

Case 2. The order of such polynomial in the nodes of the
2" layer or higher is different from the one oc-
curring in the rules located in the 1% layer.

(b) Modified SONN architecture — The number of the

input variables of the fuzzy rules in the FPN differs
across the layers of the network

Case 1. The order of the polynomial in the conclusion

part of the fuzzy rules is the same in all the
nodes of each layer

Case 2. The order of such polynomial in the nodes of the

2 layer or higher is different from the one oc-
curring in the rules located in the 1* layer.

And also for each case, we consider two kinds of input
vector formats in the conclusion part of the fuzzy rules of
the 1* layer, namely i) selected inputs and ii) entire system
inputs.

i) The input variables of the consequence part of the
fuzzy rules are same as the input variables of premise
part.

il) The input variables of the consequence part of the
fuzzy rules in a node of the 1* layer are same as the
system input variables and the input variables of the
consequence part of the fuzzy rules in a node of the
2" layer or higher are same as the input variables of
premise part.

If there are less than three input variables, the generic
SONN algorithm does not generate a highly versatile struc-
ture. To alleviate this problem, the advanced type of the
architecture is taken into consideration that can be treated
as the modified version of the generic type of the topology
of the network as shown in Fig. 2. Accordingly we identify
also two types as the following.

i) Advanced SONN: in case that the no. of system input

variables is less than three, the advanced type is used

ii) Generic SONN: in case that the no. of system input

variables is four or higher, the generic type is used.
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Fig. 2 Configuration of the topologies of the SONN and the
design alternatives available within a single FPN
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In the Figure, the “NOP, node” means the A" node of
the current layer that is the same as the node of the
corresponding previous layerNOP denotes no operation).
An arrow to the NOP node is used to show that the
corresponding same node moves from the previous layer to
the current layer. '

4. The design of the SONN

The SONN comes from a highly versatile architecture
both in the flexibility of the individual nodes (that are es-
sentially banks of nonlinear “if-then” rules) as well as the
interconnectivity between the nodes and organization of
the layers. The learning of SONNs dwells on the extended
GMDH algorithm. When developing an FPN, we choose
the input variables of a node from ~ input vari-
ablesx,, x,, ..., x,. The total number of the nodes in the
current layer depends on the number of the selected input
variables that come from the nodes situated in the preced-
ing layer. This results in & = N1/(N - r)!7! nodes, where ¥ is
the number of the selected nodes (input variables). Based
on the number of the selected nodes (input variables) and
the order of the polynomial, we build various architectures
of the SONNs. The parameters of the conclusion part of the
FPN are estimated by solving a standard mean-squared
problem. While the structure of the SONN is regular in
terms of the arrangement of the processing units into layers,
the network itself exhibits interesting self-organization ca-
pabilities meaning that the structure can grow to minimize
the performance index. The growth has two dimensions,
namely the number of the layers and the size of each layer.
The layers are added as required (the network grows in its
depth). Each layer may have a different number of nodes.
Here we proceed with a selection strategy and pick up the
best nodes in the layer and ignoring the rest. In this sense
the width of the network is not specified in advance (ex-
pect for the predefined upper limit) and can vary from
layer to layer. We use the predefined number W of nodes
(width of the layer) characterized by the best predictive
performance (based on the values of the performance in-
dex). The outputs of the retained nodes (FPNs) serve as
mputs to the next layer (generation) of the network. The
termination condition that controls the growth of the model
consists of two components, that is the performance index
and a size of the network (expressed in terms of the maxi-
mal number of the layers). This size of the network has
been experimentally found to form a sound compromise
between the high accuracy of the resulting model and its
complexity as well as generalization abilities.

5. A stability measure of the topology of the SONN

The question arises as to the selection of the proper

structure of the SONN. Obviously, the performance of the
network on the training and testing set are two important
aspects one should take into account. The values of PI; and
EPI;, refer to Table 1, are good indicators of the approxi-
mation and generalization capabilities of the SONN. We
also introduce the following ratio

« = EPL, /P, 3)

This index can be viewed as a measure of “stability” of
the model expressing how miuch the network’s perform-
ance deteriorates over the testing data. Our choice of the
structure is then guided by the minimal value of the ratio.
Additionally, if the values of K do not change very much
over a family of the SONN architectures, the selection may
not seem to be critical(intuitively the minimal size of the
network will be our preference). One should stress, how-
ever, that the usefulness of the above index may be limited
if the values of the PI vary significantly.

6. Simulation results

We illustrate the performance of the network and elabo-
rate on its development by experimenting with data coming
from the gas furnace process. The time series data(296 in-
put-output pairs) resulting from the gas furnace process has
been intensively studied in the previous literatures[3-8].
The delayed terms of methane gas flow rate, u(t) and car-
bon dioxide density, y(t) are used as three types of system
input variables(System Inputs(SI): 2,3,4) with vector for-
mats such as [u(t-3), y(t-1)], [u(t-2), y(t-2), y(t-1)] and [u(t-
2), u(t-1), y(t-2), y(t-1)]. And as output variable, y(t) is
used. The generic type of SONN is utilized for SI-4 and the
advanced type of SONN, for SI-2 and SI-3. The perform-
ance of two types of SONN architectures is far better both
in the sense of its prediction and approximation abilities
than other works studied in the literatures[3-8] as shown in
Table 1. Where PI(EPL) is defined as the mean square
errors(MSE). The results of computations of stability index
K are also summarized in Table 1. In light of the values
reported there, a preferred architecture of the network is
selected and its detailed topology is visualized in Fig. 3.
The shadowed nodes indicate neurons which have the op-
timal polynomial in each layer(the optimal being expressed
from the viewpoint of PI as well as EPI). And the values of
the performance index vis-a-vis number of layers of the
advanced and modified SONN related to the preferred ar-
chitectures of the network are shown in Fig. 4. When using
Gaussian fuzzy sets, the minimal value of the performance
index, that is PI=0.021, EPI=0.124 are obtained by using
3 inputs in the 1™ layer and 2 inputs in the 2™ layer or
higher(3 — 2 node inputs with Type 4). As shown in Fig. 4,
four types such as Type 1(Constant), Type 2(Linear), Type
3(Quadratic), and Type 4(Modified quadratic) are utilized
as the polynomial type of the consequence part of the fuzzy
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rules.

In Fig. 3,® : The A" node of the each corresponding
layer used for the generation of the output j . ®: The A"
node of the each corresponding layer used for the genera-
tion of the output 7 and indicates the optimal node in each
layer. ©: The A™ node of the each corresponding lgyer
that is not used for the generation of the output 3. @
The A™ node of the each corresponding layer that is not
used for the generation of the output $ and indicates the
optimal node in each layer. —: The solid line used for the
generation of the output 7, ----- : The dashed line that is
not used for the generation of the output 7 .

Table 1 Comparison of identification error with previous
fuzzy models (PI- performance index over the en-
tire data set, PI,- performance index on the train-
ing data, EPI; — performance index on the testing

data)

Tong’s model[3] 0.469
Sugeno and
Yasuka»%a’s model[4] 0.190
Xu’s model[5] 0.328
Pedrycz’s model[6] 0.320
Oh and Pedrycz’s model[7] 0.123 | 0.020 : 0.271
Kim, et al.’s model[§] 0.034  0.244
Basic Casel | 0.119 | 0.016 { 0.266 [ 16.625
A(g'ilr;ed Case2 [ 0.114 | 0.016 { 0.265 | 16.56
: . Casel [ 0.091 | 0.013 1 0.267 ] 20.53
Modified =& 2 170.09 [0.013 | 0.272] 20.92
Basic Casel | 0.040 | 0.013 {0.123 | 9.461
Our |Advanced| Case?
model| (SI:3) . : = g TEen s
| Case2 | 0.052 [ 0.020 : 0.130 6.5
) Basic Casel [ 0.049 | 0.016 : 0.116 | 7.25
Generic Case2 | 0.047 | 0.016 : 0.128 8
(SI:4) . Casel | 0.057 | 0.016 { 0.133 | 8.312
Modified =555 1.059 [ 0.018 0.131] 7.278

zor)
Fig. 3 The optimal topology of the advanced and modified
SONN in Case 1(SI : 3, 3 —2 node inputs, Type 4
and Gaussian MF)

‘Type lta) : @ Type 3(e) ;@
Type2(h) 10 Type 4(d) ¥
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Type () 3 & Type 3tc) @
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(a) In case of tréining (b) In case of ‘evaluation
Fig. 4 Performance index of the advanced and modified
SONN in Case 1 (SI: 3)

7. Conclusions

In this paper, we have introduced an idea of a self-
organizing neural networks (SONN) with fuzzy polyno-
mial neurons, studied its properties and came up with a
design procedure. Extensive experimental studies produced
superb results. Some general observations can be summa-
rized as follows: (i)with a properly selected type of mem-
bership functions and the organization of the layers, SONN
performs better than other models, (ii) the architecture of
the SONN is not fully predetermined and can be generated
(adjusted) during learning, (iii) one can reduce a conflict
between overfitting and generalization abilities of the
model, and (iv) the diversity of the SONN architectures
helps determine the best alternative for the problem at hand.
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