Acknowledgement
이 논문은 2024년 행정안전부에서 지원하는 재난안전산업 기술사업화 지원사업(RS-2024-00416793)과 2024년 과학기술정보통신부 재원으로 DGIST 기관사업 (2024-IT-01)의 지원에 의해 연구되었음.
References
- Ajakwe, S. O., Ihekoronye, V. U., Kim, D.-S. and Lee, J. M. (2022). DRONET: Multi-tasking Framework for Real-time Industrial Facility Aerial Surveillance and Safety, Drones, 6(2), 46. https://doi.org/10.3390/drones6020046
- Ergun, S., Han, D. G. and Kim, J. S. (2021). A Unified Perception Benchmark for Capacitive Proximity Sensing towards Safe Human-robot Collaboration (HRC), 2021 IEEE International Conference on Robotics and Automation (ICRA), May 30-Jun. 05, Xi'an, China, pp. 3634-3640. https://doi.org/10.1109/ICRA48506.2021.9561224
- Yeo, J., Lee, J. and Ryu, J. T. (2024). Study on Effects of Separation Distance between Flat Cover and Radar for 24 GHz Band Radar, Journal of Korea Society of Industrial Information Systems, 29(2), 27-33. http://dx.doi.org/10.9723/jksiis.2024.29.2.027
- Kim, B., Kim, S. and Lee, J. (2018). A Novel DFT-Based DOA Estimation by a Virtual Array Extension Using Simple Multiplications for FMCW Radar, Sensors, 18(5), 1560-1576. https://doi.org/10.3390/s18051560
- Kim, S., Kim, B. and Lee, J. (2017). Low-complexity Spectral Partitioning Based Music Algorithm for Automotive Radar, Elektronika ir Elektrotechnika, 23(4), 33-38. https://doi.org/10.5755/j01.eie.23.4.18719
- Linder, T., Vaskevicius, N., Schirmer, R. and Arras, K. O. (2021). Cross-modal Analysis of Human Detection for Robotics: An Industrial Case Study, 2021 IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS), Sep. 27-Oct. 01, Prague, Czech Republic, pp. 971-978. https://doi.org/10.1109/IROS51168.2021.9636158
- Liu, G., Li, X., Xu, C., Ma, L. and Li, H. (2023). FMCW Radar-based Human Sitting Posture Detection, IEEE Access, 11, 102746-102756. https://doi.org/10.1109/ACCESS.2023.3312328
- Rey-Merchan, M. del C., Gomez-de-Gabriel, J. M., Fernandez-Madrigal, J. A. and Lopez-Arquillos, A. (2020). Improving the Prevention of Fall from Height on Construction Sites through the Combination of Technologies, International Journal of Occupational Safety and Ergonomics, 28(1), 590-599. https://doi.org/10.1080/10803548.2020.1815393
- Song, S., Kim, B., Kim, S. and Lee, J. (2021). Detection of Stationary and Moving Obstacles within a Critical Safety Zone Using 24GHz Multiple Radars and IMU Sensors in a Safety-assisted Module for Heavy Construction Vehicles, 2021 KSAE Annual Conference & Exhibition, Nov. 17, Yeosu, Korea.
- Shen, Z., Nunez-Yanez, J. and Dahnoun, N. (2024). Advanced Millimeter-wave Radar System for Real-time Multiple-human Tracking and Fall Detection, Sensors, 24(11), 3660. https://doi.org/10.3390/s24113660
- Shi, T., Guo, P., Wang, R., Ma, Z., Zhang, W., Li, W., Fu, H. and Hu, H. (2024). A Survey on Multi-sensor Fusion Perimeter Intrusion Detection in High-speed Railways, Sensors, 24(17), 5463. https://doi.org/10.3390/s24175463
- Skog, M. (2024). Human Detection in Low-visibility Industrial Settings Using Automotive 4D Radar and Deep Learning, Dissertation, Graduate School of Orebro University, Orebro, Sweden.
- Sommer, P., Rigner, A. and Zlatanski, M. (2020). Radar-based Situational Awareness for Industrial Safety Applications, 2020 IEEE Sensors, Oct. 25-28, Rotterdam, Netherlands, pp. 1-4. https://doi.org/10.1109/SENSORS47125.2020.9278603
- Song, S., Kim, S., Kim, B., Kweon, H. and Lee, J. (2022). Machine Learning in a Human Detection based on a Multi-radar and IMU Sensor for a Blind Spot Detection of a Smart Construction Vehicle, ISI ITA 2022, S5-16.