• Title/Summary/Keyword: 앙상블 부스팅 모델

Search Result 20, Processing Time 0.027 seconds

A Gradient Boosting Method for Graph Neural Networks (그래프 신경망에 대한 그래디언트 부스팅 기법)

  • Jang, Eunjo;Lee, Ki Yong
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.574-576
    • /
    • 2022
  • 최근 여러 분야에서 그래프 신경망(graph neural network, GNN)이 활발히 연구되고 있다. 하지만 지금까지 대부분의 GNN 연구는 단일 GNN 모델의 성능을 향상하는 데 집중되었다. 본 논문에서는 앙상블(ensemble) 기법의 대표적 기법인 그래디언트 부스팅(gradient boosting)을 이용하여 GNN의 앙상블 모델을 만드는 방법을 제안한다. 제안 방법은 앞서 만들어진 GNN의 오차를 경사 하강법(gradient descent)을 이용하여 감소시키는 방향으로 다음 GNN을 생성한다. 이 과정을 반복하여 GNN의 최종 앙상블 모델을 얻는다. 실험에서 GNN의 대표적인 모델인 그래프 합성곱 신경망(graph convolutional network, GCN)에 제안 방법을 적용하여 앙상블 모델을 생성한 결과, 단일 GCN 모델에 비해 노드 분류 정확도가 11.3%p까지 증가하였음을 확인하였다.

Ensemble Design of Machine Learning Technigues: Experimental Verification by Prediction of Drifter Trajectory (앙상블을 이용한 기계학습 기법의 설계: 뜰개 이동경로 예측을 통한 실험적 검증)

  • Lee, Chan-Jae;Kim, Yong-Hyuk
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.57-67
    • /
    • 2018
  • The ensemble is a unified approach used for getting better performance by using multiple algorithms in machine learning. In this paper, we introduce boosting and bagging, which have been widely used in ensemble techniques, and design a method using support vector regression, radial basis function network, Gaussian process, and multilayer perceptron. In addition, our experiment was performed by adding a recurrent neural network and MOHID numerical model. The drifter data used for our experimental verification consist of 683 observations in seven regions. The performance of our ensemble technique is verified by comparison with four algorithms each. As verification, mean absolute error was adapted. The presented methods are based on ensemble models using bagging, boosting, and machine learning. The error rate was calculated by assigning the equal weight value and different weight value to each unit model in ensemble. The ensemble model using machine learning showed 61.7% improvement compared to the average of four machine learning technique.

Worker Detection Based on Ensemble Boosting Model Using a Low-cost Radar and IMU for Smart Safety System in Manufacturing (산업제조현장 스마트 안전 시스템용 레이다 및 IMU 센서를 이용한 앙상블 부스팅 모델 기반 작업자 탐지 기술)

  • Seungeon Song;Sangdong Kim;Bong-Seok Kim;Jeong Tak Ryu;Jonghun Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.5
    • /
    • pp.21-32
    • /
    • 2024
  • This paper proposes a smart safety system that combines low-cost CW(Continuous Wave) radar and IMU sensors to enhance blind spots that pose safety risks to workers in industrial manufacturing environments. The system employs a 24 GHz radar and a 6-axis IMU sensor to detect worker movements and utilizes a machine learning model to recognize worker situations in vibrating manufacturing sites. The ensemble boosting tree-based model achieved over 92.8% worker detection accuracy, demonstrating its effectiveness in improving safety in industrial settings.

Malicious Insider Detection Using Boosting Ensemble Methods (앙상블 학습의 부스팅 방법을 이용한 악의적인 내부자 탐지 기법)

  • Park, Suyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.267-277
    • /
    • 2022
  • Due to the increasing proportion of cloud and remote working environments, various information security incidents are occurring. Insider threats have emerged as a major issue, with cases in which corporate insiders attempting to leak confidential data by accessing it remotely. In response, insider threat detection approaches based on machine learning have been developed. However, existing machine learning methods used to detect insider threats do not take biases and variances into account, which leads to limited performance. In this paper, boosting-type ensemble learning algorithms are applied to verify the performance of malicious insider detection, conduct a close analysis, and even consider the imbalance in datasets to determine the final result. Through experiments, we show that using ensemble learning achieves similar or higher accuracy to other existing malicious insider detection approaches while considering bias-variance tradeoff. The experimental results show that ensemble learning using bagging and boosting methods reached an accuracy of over 98%, which improves malicious insider detection performance by 5.62% compared to the average accuracy of single learning models used.

The study of foreign exchange trading revenue model using decision tree and gradient boosting (외환거래에서 의사결정나무와 그래디언트 부스팅을 이용한 수익 모형 연구)

  • Jung, Ji Hyeon;Min, Dae Kee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.1
    • /
    • pp.161-170
    • /
    • 2013
  • The FX (Foreign Exchange) is a form of exchange for the global decentralized trading of international currencies. The simple sense of Forex is simultaneous purchase and sale of the currency or the exchange of one country's currency for other countries'. We can find the consistent rules of trading by comparing the gradient boosting method and the decision trees methods. Methods such as time series analysis used for the prediction of financial markets have advantage of the long-term forecasting model. On the other hand, it is difficult to reflect the rapidly changing price fluctuations in the short term. Therefore, in this study, gradient boosting method and decision tree method are applied to analyze the short-term data in order to make the rules for the revenue structure of the FX market and evaluated the stability and the prediction of the model.

A New Ensemble Machine Learning Technique with Multiple Stacking (다중 스태킹을 가진 새로운 앙상블 학습 기법)

  • Lee, Su-eun;Kim, Han-joon
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.3
    • /
    • pp.1-13
    • /
    • 2020
  • Machine learning refers to a model generation technique that can solve specific problems from the generalization process for given data. In order to generate a high performance model, high quality training data and learning algorithms for generalization process should be prepared. As one way of improving the performance of model to be learned, the Ensemble technique generates multiple models rather than a single model, which includes bagging, boosting, and stacking learning techniques. This paper proposes a new Ensemble technique with multiple stacking that outperforms the conventional stacking technique. The learning structure of multiple stacking ensemble technique is similar to the structure of deep learning, in which each layer is composed of a combination of stacking models, and the number of layers get increased so as to minimize the misclassification rate of each layer. Through experiments using four types of datasets, we have showed that the proposed method outperforms the exiting ones.

Research on Insurance Claim Prediction Using Ensemble Learning-Based Dynamic Weighted Allocation Model (앙상블 러닝 기반 동적 가중치 할당 모델을 통한 보험금 예측 인공지능 연구)

  • Jong-Seok Choi
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.4
    • /
    • pp.221-228
    • /
    • 2024
  • Predicting insurance claims is a key task for insurance companies to manage risks and maintain financial stability. Accurate insurance claim predictions enable insurers to set appropriate premiums, reduce unexpected losses, and improve the quality of customer service. This study aims to enhance the performance of insurance claim prediction models by applying ensemble learning techniques. The predictive performance of models such as Random Forest, Gradient Boosting Machine (GBM), XGBoost, Stacking, and the proposed Dynamic Weighted Ensemble (DWE) model were compared and analyzed. Model performance was evaluated using Mean Absolute Error (MAE), Mean Squared Error (MSE), and the Coefficient of Determination (R2). Experimental results showed that the DWE model outperformed others in terms of evaluation metrics, achieving optimal predictive performance by combining the prediction results of Random Forest, XGBoost, LR, and LightGBM. This study demonstrates that ensemble learning techniques are effective in improving the accuracy of insurance claim predictions and suggests the potential utilization of AI-based predictive models in the insurance industry.

Evaluation of a Thermal Conductivity Prediction Model for Compacted Clay Based on a Machine Learning Method (기계학습법을 통한 압축 벤토나이트의 열전도도 추정 모델 평가)

  • Yoon, Seok;Bang, Hyun-Tae;Kim, Geon-Young;Jeon, Haemin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.123-131
    • /
    • 2021
  • The buffer is a key component of an engineered barrier system that safeguards the disposal of high-level radioactive waste. Buffers are located between disposal canisters and host rock, and they can restrain the release of radionuclides and protect canisters from the inflow of ground water. Since considerable heat is released from a disposal canister to the surrounding buffer, the thermal conductivity of the buffer is a very important parameter in the entire disposal safety. For this reason, a lot of research has been conducted on thermal conductivity prediction models that consider various factors. In this study, the thermal conductivity of a buffer is estimated using the machine learning methods of: linear regression, decision tree, support vector machine (SVM), ensemble, Gaussian process regression (GPR), neural network, deep belief network, and genetic programming. In the results, the machine learning methods such as ensemble, genetic programming, SVM with cubic parameter, and GPR showed better performance compared with the regression model, with the ensemble with XGBoost and Gaussian process regression models showing best performance.

Development of an Ensemble Prediction Model for Lateral Deformation of Retaining Wall Under Construction (시공 중 흙막이 벽체 수평변위 예측을 위한 앙상블 모델 개발)

  • Seo, Seunghwan;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.4
    • /
    • pp.5-17
    • /
    • 2023
  • The advancement in large-scale underground excavation in urban areas necessitates monitoring and predicting technologies that can pre-emptively mitigate risk factors at construction sites. Traditionally, two methods predict the deformation of retaining walls induced by excavation: empirical and numerical analysis. Recent progress in artificial intelligence technology has led to the development of a predictive model using machine learning techniques. This study developed a model for predicting the deformation of a retaining wall under construction using a boosting-based algorithm and an ensemble model with outstanding predictive power and efficiency. A database was established using the data from the design-construction-maintenance process of the underground retaining wall project in a manifold manner. Based on these data, a learning model was created, and the performance was evaluated. The boosting and ensemble models demonstrated that wall deformation could be accurately predicted. In addition, it was confirmed that prediction results with the characteristics of the actual construction process can be presented using data collected from ground measurements. The predictive model developed in this study is expected to be used to evaluate and monitor the stability of retaining walls under construction.

Optimal Sensor Location in Water Distribution Network using XGBoost Model (XGBoost 기반 상수도관망 센서 위치 최적화)

  • Hyewoon Jang;Donghwi Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.217-217
    • /
    • 2023
  • 상수도관망은 사용자에게 고품질의 물을 안정적으로 공급하는 것을 목적으로 하며, 이를 평가하기 위한 지표 중 하나로 압력을 활용한다. 최근 스마트 센서의 설치가 확장됨에 따라 기계학습기법을 이용한 실시간 데이터 기반의 분석이 활발하다. 따라서 어디에서 데이터를 수집하느냐에 대한 센서 위치 결정이 중요하다. 본 연구는 eXtreme Gradient Boosting(XGBoost) 모델을 활용하여 대규모 상수도관망 내 센서 위치를 최적화하는 방법론을 제안한다. XGBoost 모델은 여러 의사결정 나무(decision tree)를 활용하는 앙상블(ensemble) 모델이며, 오차에 따른 가중치를 부여하여 성능을 향상시키는 부스팅(boosting) 방식을 이용한다. 이는 분산 및 병렬 처리가 가능해 메모리리소스를 최적으로 사용하고, 학습 속도가 빠르며 결측치에 대한 전처리 과정을 모델 내에 포함하고 있다는 장점이 있다. 모델 구현을 위한 독립 변수 결정을 위해 압력 데이터의 변동성 및 평균압력 값을 고려하여 상수도관망을 대표하는 중요 절점(critical node)를 선정한다. 중요 절점의 압력 값을 예측하는 XGBoost 모델을 구축하고 모델의 성능과 요인 중요도(feature importance) 값을 고려하여 센서의 최적 위치를 선정한다. 이러한 방법론을 기반으로 상수도관망의 특성에 따른 경향성을 파악하기 위해 다양한 형태(예를 들어, 망형, 가지형)와 구성 절점의 수를 변화시키며 결과를 분석한다. 본 연구에서 구축한 XGBoost 모델은 추가적인 전처리 과정을 최소화하며 대규모 관망에 간편하게 사용할 수 있어 추후 다양한 입출력 데이터의 조합을 통해 센서 위치 외에도 상수도관망에서의 성능 최적화에 활용할 수 있을 것으로 기대한다.

  • PDF