• Title/Summary/Keyword: Ensemble Boosting Model

Search Result 71, Processing Time 0.022 seconds

Ensemble Classification Method for Efficient Medical Diagnostic (효율적인 의료진단을 위한 앙상블 분류 기법)

  • Jung, Yong-Gyu;Heo, Go-Eun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.97-102
    • /
    • 2010
  • The purpose of medical data mining for efficient algorithms and techniques throughout the various diseases is to increase the reliability of estimates to classify. Previous studies, an algorithm based on a single model, and even the existence of the model to better predict the classification accuracy of multi-model ensemble-based research techniques are being applied. In this paper, the higher the medical data to predict the reliability of the existing scope of the ensemble technique applied to the I-ENSEMBLE offers. Data for the diagnosis of hypothyroidism is the result of applying the experimental technique, a representative ensemble Bagging, Boosting, Stacking technique significantly improved accuracy compared to all existing, respectively. In addition, compared to traditional single-model techniques and ensemble techniques Multi modeling when applied to represent the effects were more pronounced.

Anomaly-Based Network Intrusion Detection: An Approach Using Ensemble-Based Machine Learning Algorithm

  • Kashif Gul Chachar;Syed Nadeem Ahsan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.107-118
    • /
    • 2024
  • With the seamless growth of the technology, network usage requirements are expanding day by day. The majority of electronic devices are capable of communication, which strongly requires a secure and reliable network. Network-based intrusion detection systems (NIDS) is a new method for preventing and alerting computers and networks from attacks. Machine Learning is an emerging field that provides a variety of ways to implement effective network intrusion detection systems (NIDS). Bagging and Boosting are two ensemble ML techniques, renowned for better performance in the learning and classification process. In this paper, the study provides a detailed literature review of the past work done and proposed a novel ensemble approach to develop a NIDS system based on the voting method using bagging and boosting ensemble techniques. The test results demonstrate that the ensemble of bagging and boosting through voting exhibits the highest classification accuracy of 99.98% and a minimum false positive rate (FPR) on both datasets. Although the model building time is average which can be a tradeoff by processor speed.

Ensemble Gene Selection Method Based on Multiple Tree Models

  • Mingzhu Lou
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.652-662
    • /
    • 2023
  • Identifying highly discriminating genes is a critical step in tumor recognition tasks based on microarray gene expression profile data and machine learning. Gene selection based on tree models has been the subject of several studies. However, these methods are based on a single-tree model, often not robust to ultra-highdimensional microarray datasets, resulting in the loss of useful information and unsatisfactory classification accuracy. Motivated by the limitations of single-tree-based gene selection, in this study, ensemble gene selection methods based on multiple-tree models were studied to improve the classification performance of tumor identification. Specifically, we selected the three most representative tree models: ID3, random forest, and gradient boosting decision tree. Each tree model selects top-n genes from the microarray dataset based on its intrinsic mechanism. Subsequently, three ensemble gene selection methods were investigated, namely multipletree model intersection, multiple-tree module union, and multiple-tree module cross-union, were investigated. Experimental results on five benchmark public microarray gene expression datasets proved that the multiple tree module union is significantly superior to gene selection based on a single tree model and other competitive gene selection methods in classification accuracy.

Classification for Imbalanced Breast Cancer Dataset Using Resampling Methods

  • Hana Babiker, Nassar
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.89-95
    • /
    • 2023
  • Analyzing breast cancer patient files is becoming an exciting area of medical information analysis, especially with the increasing number of patient files. In this paper, breast cancer data is collected from Khartoum state hospital, and the dataset is classified into recurrence and no recurrence. The data is imbalanced, meaning that one of the two classes have more sample than the other. Many pre-processing techniques are applied to classify this imbalanced data, resampling, attribute selection, and handling missing values, and then different classifiers models are built. In the first experiment, five classifiers (ANN, REP TREE, SVM, and J48) are used, and in the second experiment, meta-learning algorithms (Bagging, Boosting, and Random subspace). Finally, the ensemble model is used. The best result was obtained from the ensemble model (Boosting with J48) with the highest accuracy 95.2797% among all the algorithms, followed by Bagging with J48(90.559%) and random subspace with J48(84.2657%). The breast cancer imbalanced dataset was classified into recurrence, and no recurrence with different classified algorithms and the best result was obtained from the ensemble model.

Asymmetric Semi-Supervised Boosting Scheme for Interactive Image Retrieval

  • Wu, Jun;Lu, Ming-Yu
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.766-773
    • /
    • 2010
  • Support vector machine (SVM) active learning plays a key role in the interactive content-based image retrieval (CBIR) community. However, the regular SVM active learning is challenged by what we call "the small example problem" and "the asymmetric distribution problem." This paper attempts to integrate the merits of semi-supervised learning, ensemble learning, and active learning into the interactive CBIR. Concretely, unlabeled images are exploited to facilitate boosting by helping augment the diversity among base SVM classifiers, and then the learned ensemble model is used to identify the most informative images for active learning. In particular, a bias-weighting mechanism is developed to guide the ensemble model to pay more attention on positive images than negative images. Experiments on 5000 Corel images show that the proposed method yields better retrieval performance by an amount of 0.16 in mean average precision compared to regular SVM active learning, which is more effective than some existing improved variants of SVM active learning.

Investment, Export, and Exchange Rate on Prediction of Employment with Decision Tree, Random Forest, and Gradient Boosting Machine Learning Models (투자와 수출 및 환율의 고용에 대한 의사결정 나무, 랜덤 포레스트와 그래디언트 부스팅 머신러닝 모형 예측)

  • Chae-Deug Yi
    • Korea Trade Review
    • /
    • v.46 no.2
    • /
    • pp.281-299
    • /
    • 2021
  • This paper analyzes the feasibility of using machine learning methods to forecast the employment. The machine learning methods, such as decision tree, artificial neural network, and ensemble models such as random forest and gradient boosting regression tree were used to forecast the employment in Busan regional economy. The following were the main findings of the comparison of their predictive abilities. First, the forecasting power of machine learning methods can predict the employment well. Second, the forecasting values for the employment by decision tree models appeared somewhat differently according to the depth of decision trees. Third, the predictive power of artificial neural network model, however, does not show the high predictive power. Fourth, the ensemble models such as random forest and gradient boosting regression tree model show the higher predictive power. Thus, since the machine learning method can accurately predict the employment, we need to improve the accuracy of forecasting employment with the use of machine learning methods.

Ensemble Design of Machine Learning Technigues: Experimental Verification by Prediction of Drifter Trajectory (앙상블을 이용한 기계학습 기법의 설계: 뜰개 이동경로 예측을 통한 실험적 검증)

  • Lee, Chan-Jae;Kim, Yong-Hyuk
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.57-67
    • /
    • 2018
  • The ensemble is a unified approach used for getting better performance by using multiple algorithms in machine learning. In this paper, we introduce boosting and bagging, which have been widely used in ensemble techniques, and design a method using support vector regression, radial basis function network, Gaussian process, and multilayer perceptron. In addition, our experiment was performed by adding a recurrent neural network and MOHID numerical model. The drifter data used for our experimental verification consist of 683 observations in seven regions. The performance of our ensemble technique is verified by comparison with four algorithms each. As verification, mean absolute error was adapted. The presented methods are based on ensemble models using bagging, boosting, and machine learning. The error rate was calculated by assigning the equal weight value and different weight value to each unit model in ensemble. The ensemble model using machine learning showed 61.7% improvement compared to the average of four machine learning technique.

Worker Detection Based on Ensemble Boosting Model Using a Low-cost Radar and IMU for Smart Safety System in Manufacturing (산업제조현장 스마트 안전 시스템용 레이다 및 IMU 센서를 이용한 앙상블 부스팅 모델 기반 작업자 탐지 기술)

  • Seungeon Song;Sangdong Kim;Bong-Seok Kim;Jeong Tak Ryu;Jonghun Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.5
    • /
    • pp.21-32
    • /
    • 2024
  • This paper proposes a smart safety system that combines low-cost CW(Continuous Wave) radar and IMU sensors to enhance blind spots that pose safety risks to workers in industrial manufacturing environments. The system employs a 24 GHz radar and a 6-axis IMU sensor to detect worker movements and utilizes a machine learning model to recognize worker situations in vibrating manufacturing sites. The ensemble boosting tree-based model achieved over 92.8% worker detection accuracy, demonstrating its effectiveness in improving safety in industrial settings.

An Ensemble Cascading Extremely Randomized Trees Framework for Short-Term Traffic Flow Prediction

  • Zhang, Fan;Bai, Jing;Li, Xiaoyu;Pei, Changxing;Havyarimana, Vincent
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1975-1988
    • /
    • 2019
  • Short-term traffic flow prediction plays an important role in intelligent transportation systems (ITS) in areas such as transportation management, traffic control and guidance. For short-term traffic flow regression predictions, the main challenge stems from the non-stationary property of traffic flow data. In this paper, we design an ensemble cascading prediction framework based on extremely randomized trees (extra-trees) using a boosting technique called EET to predict the short-term traffic flow under non-stationary environments. Extra-trees is a tree-based ensemble method. It essentially consists of strongly randomizing both the attribute and cut-point choices while splitting a tree node. This mechanism reduces the variance of the model and is, therefore, more suitable for traffic flow regression prediction in non-stationary environments. Moreover, the extra-trees algorithm uses boosting ensemble technique averaging to improve the predictive accuracy and control overfitting. To the best of our knowledge, this is the first time that extra-trees have been used as fundamental building blocks in boosting committee machines. The proposed approach involves predicting 5 min in advance using real-time traffic flow data in the context of inherently considering temporal and spatial correlations. Experiments demonstrate that the proposed method achieves higher accuracy and lower variance and computational complexity when compared to the existing methods.

Development of an Ensemble Prediction Model for Lateral Deformation of Retaining Wall Under Construction (시공 중 흙막이 벽체 수평변위 예측을 위한 앙상블 모델 개발)

  • Seo, Seunghwan;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.4
    • /
    • pp.5-17
    • /
    • 2023
  • The advancement in large-scale underground excavation in urban areas necessitates monitoring and predicting technologies that can pre-emptively mitigate risk factors at construction sites. Traditionally, two methods predict the deformation of retaining walls induced by excavation: empirical and numerical analysis. Recent progress in artificial intelligence technology has led to the development of a predictive model using machine learning techniques. This study developed a model for predicting the deformation of a retaining wall under construction using a boosting-based algorithm and an ensemble model with outstanding predictive power and efficiency. A database was established using the data from the design-construction-maintenance process of the underground retaining wall project in a manifold manner. Based on these data, a learning model was created, and the performance was evaluated. The boosting and ensemble models demonstrated that wall deformation could be accurately predicted. In addition, it was confirmed that prediction results with the characteristics of the actual construction process can be presented using data collected from ground measurements. The predictive model developed in this study is expected to be used to evaluate and monitor the stability of retaining walls under construction.