DOI QR코드

DOI QR Code

화염분무열분해법을 이용한 구형의 고결정성 리튬 과잉 양극재 제조

Synthesis of Li-rich Cathode Material with Spherical Shape and High Crystallinity by Using Flame Spray Pyrolysis

  • 임성남
  • Sung Nam Lim (Micro/Nano Sale Manufacturing R&D Group, Korea Institute of Industrial Technology (KITECH))
  • 투고 : 2024.07.17
  • 심사 : 2024.08.14
  • 발행 : 2024.09.25

초록

A Li-rich cathode material, Li1.167Mn0.548Ni0.18Co0.105O2, with a spherical shape and high crystallinity, is prepared using flame spray pyrolysis. The post-heat treatment condition influences the properties of the prepared material, such as its structure, morphology, and chemical composition, and optimum performance is achieved at 900℃. Various excess Li contents (0-12 wt.%) are introduced in the precursor solution to compensate for volatilized Li during synthesis, bringing it close to the target composition. Compensation for volatilized Li enhances the electrochemical performance, i.e., the Li-compensated sample shows a good discharge capacity of 247 mAh g-1 at a current density of 20 mA g-1 in a potential window of 4.6-2.5 V. In addition, the prepared Li-rich cathode material supplemented with 9 wt.% of the Li source shows increased discharge capacity of 175 and 148 mAh g-1 at 200 and 400 mA g-1, respectively, compared with those of a bare sample (164 and 127 mAh g-1, respectively).

키워드

과제정보

본 연구는 2024년 정부(과학기술정보통신부)의 재원으로 국가과학기술연구회 글로벌 TOP 전략연구단 지원사업(No. GTL24011-000)과 산업통상자원부 한국산업기술진흥원-전기 이륜차 배터리 공유스테이션 기술개발 및 실증사업(No. P0020636)의 지원을 받아 수행되었습니다.

참고문헌

  1. Zeng, L., Liang, H., Qiu, B., Shi Z.,, Cheng, S., Shi, K., Liu, Q., and Liu, Z., 2023, "Voltage decay of Li-rich layered oxides: Mechanism, modification strategies, and perspectives", Adv. Funct. Mater., 33(25), 2213260.
  2. Kang, S.K., Choi, D.Y., Lee, H.W., Choi, B.J., and Kang, Y.M., 2023, "A mechanistic insight into the oxygen redox of Li-rich layered cathodes and their related electronic/atomic behaviors upon cycling", Adv. Mater., 35(43), 2211965.
  3. Wang, B., Cui, J., Li, Z., Wang, H., Zhang, D., Wang, Q., Sun, H., and Wu, Y.A., 2023, "Review on comprehending and enhancing the initial coulombic efficiency of Li-rich Mn-based cathode materials in lithium-ion batteries", Mater. Chem. Front., 7, 2570-2594.
  4. Dong, H., and Koenig Jr., G.M., 2020, "A review on synthesis and engineering of crystal precursors produced via coprecipitation for multicomponent lithium-ion battery cathode materials", CrystEngComm., 22, 1514-1530.
  5. Malik, M., Chan, K.H., and Azimi, G., 2022, "Review on the synthesis of LiNixMnyCo1-x-yO2 (NMC) cathodes for lithium-ion batteries", Mater. Today Energy, 28, 101066.
  6. Sattar, T., Lee, S.H., Jin, B.S., and Kim, H.S., 2020, "Influence of Mo addition on the structural and electrochemical performance of Ni-rich cathode material for lithium-ion batteries", Sci. Rep., 10, 8562.
  7. Quilty, C.D., Wu, D., Li, W., Bock, D.C., Wang, L., Housel, L.M., Abraham, A., Takeuchi, K.J., Marschilok, A.C., and Takeuchi, E.S., 2023, "Electron and ion transport in lithium and lithiu-ion battery negative and positive composite electrodes", Chem. Rev., 123(4), 1327-1363.
  8. Li, Z., Fu, N, and Yang, Z., 2023, "Particulate modification of lithium-ion battery anode materials and electrolytes", Particuology, 83, 129-141.
  9. Zhang, H., Goh, B.H.H., Chong, C.T., Zhang, Y., Lee, C.T., Gao, Y., Tian, B., Tran, M.V. Yasin, M.F.M., and Ng., J.H., 2024, "A review of flame aerosol synthesis technology for the synthesis of nanoparticles and functional energy materials", J. Solid State Chem., 336, 124774.
  10. Ismael, M., Sharma, A., and Kumar, N., 2024, "An extensive catalytic potential of sustainable TiO2-based materials fabricated via flame spray pyrolysis: A comprehensive review", Sustain. Mater. Techno., 40, e00826.
  11. Bhat, M., Luo, S., Zhang, J., Zhang, C., Zhou, B., and Deng, S., 2024, "Multi-component precursor droplet evaporation in spray synthesis of cathode materials", Chem. Eng. J., 479, 147417.
  12. Zang, G., Zhang, J., Xu, S., and Xing, Y., 2021, "Techno-economic analysis of cathode material production using flame-assisted spray pyrolysis", Energy, 218, 119504.
  13. Li, J., Li, W., Zhang, C., Han, C., Chen, X., Zhao, H., Xu, H., Jia, G., Li, Z., and Li, J., et al., 2023, "Tuning Li2MnO3-like domain size and surface structure enables highly stabilized Li-rich layered oxide cathodes", ACS Nano, 17(17), 16827-16839.
  14. Menon, A.S., Khalil, S., Ojwang, D.O., Edstrom, K., Gomez, C.P., and Brant W.R., 2022, "Synthesis-structure relationships in Li- and Mn-rich layered oxides: phase evolution, superstructure ordering and stacking faults", Dalton Trans., 51(11), 4435-4446.
  15. Nomura, F., Liu, Y., Tanabe, T., Tamura, N., Tsuda, T., Hagiwara, T., Gunji, T., Ohsaka, T., and Matsumoto, F., 2018, "Optimization of calcination temperature in preparation of a high capacity Li-rich solid-solution Li[Li0.2Ni0.18Co0.03Mn0.58]O2 material and its cathode performance in lithium ion battery", Electrochim. Acta, 269, 321-330.
  16. Zhuo, H., Liu, Y., Wang, Z., Zhang, A., Li, Z., Ren., Z., Liu, X., Peng, H., Wang, L., and Shi, J., et al., 2021, "Insight of reaction mechanism and anionic redox behavior for Li-rich and Mn-based oxide materials from local structure", Nano Energy, 83, 105812.
  17. Liu, Y., Zhuo, H., Yin, Y., Lu, S., Wnag, Z., and Zhuang, W., 2020, "Remaining Li-content dependent structural evolution during high temperature re-heat treatment of quantitatively delithiated Li-rich cathode materials with surface defect-spinel phase", ACS Appl. Mater. Interfaces, 12(24), 27226-27240.
  18. Ma, Q., Yin, S., Ding, F., Meng, J., Zhong, S., and Dai, C., 2019, "Understanding effects of lithium content on structural and electrochemical characteristics of Li1+xMn0.7Ni0.2Co0.1O2.25+x/2 cathode materials for lithium-ion batteries", Mater. Sci. Eng. B, 246, 143-152.