• Title/Summary/Keyword: Lithium compensation

Search Result 11, Processing Time 0.02 seconds

Grid-Connected Peak Load Compensation System Based on Lithium Polymer Battery Energy Storage System

  • Jung, Doo-Yong;Ji, Young-Hyok;Lee, Su-Won;Won, Chung-Yuen;Seo, Kwang-Duk;Jung, Yong-Chae
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.265-267
    • /
    • 2009
  • we proposed a grid connected peak load compensation system with high discharge current characteristics based on lithium polymer battery for development of the next generation power-station. The lithium polymer battery has faster discharge current characteristics than conventional battery, so that can compensate high active power demanded by load in a short time using the low capacity battery bank. Therefore, it is possible to control power leveling of grid by measuring storage energy of battery and active power which is needed from load. The validity of proposed system was verified through the simulation and experiment.

  • PDF

Design of Over Current Sequence Control Algorithm According to Lithium Battery Fuse Temperature Compensation (리튬 배터리 퓨즈 온도 보상에 따른 과전류 시퀀스 제어 알고리즘 설계)

  • Song, Jung-Yong;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.58-63
    • /
    • 2019
  • Lithium-ion batteries used for IT, automobiles, and industrial energy-storage devices have battery management systems (BMS) to protect the battery from abnormal voltage, current, and temperature environments, as well as safety devices like, current interruption device (CID), fuse, and vent to obtain positive temperature coefficient (PTC). Nonetheless, there are harmful to human health and property and damage the brand image of the manufacturer because of smoke, fire, and explosion of lithium battery packs. In this paper, we propose a systematic protection algorithm combining battery temperature, over-current, and interconnection between protection elements to prevent copper deposition, internal short circuit, and separator shrinkage due to frequent and instantaneous over-current discharges. The parameters of the proposed algorithm are suggested to utilize the experimental data in consideration of battery pack operating conditions and malicious conditions.

Synthesis of Li-rich Cathode Material with Spherical Shape and High Crystallinity by Using Flame Spray Pyrolysis (화염분무열분해법을 이용한 구형의 고결정성 리튬 과잉 양극재 제조)

  • Sung Nam Lim
    • New & Renewable Energy
    • /
    • v.20 no.3
    • /
    • pp.20-27
    • /
    • 2024
  • A Li-rich cathode material, Li1.167Mn0.548Ni0.18Co0.105O2, with a spherical shape and high crystallinity, is prepared using flame spray pyrolysis. The post-heat treatment condition influences the properties of the prepared material, such as its structure, morphology, and chemical composition, and optimum performance is achieved at 900℃. Various excess Li contents (0-12 wt.%) are introduced in the precursor solution to compensate for volatilized Li during synthesis, bringing it close to the target composition. Compensation for volatilized Li enhances the electrochemical performance, i.e., the Li-compensated sample shows a good discharge capacity of 247 mAh g-1 at a current density of 20 mA g-1 in a potential window of 4.6-2.5 V. In addition, the prepared Li-rich cathode material supplemented with 9 wt.% of the Li source shows increased discharge capacity of 175 and 148 mAh g-1 at 200 and 400 mA g-1, respectively, compared with those of a bare sample (164 and 127 mAh g-1, respectively).

Research on Risk Assessment of Lithium-ion Battery Manufacturing Process Considering Cell Materials (셀소재를 고려한 리튬2차전지 제조공정 위험성 평가 방법 연구)

  • Kim, Taehoon
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.2
    • /
    • pp.76-87
    • /
    • 2022
  • Lithium-ion batteries (LIBs) have attracted much interest for their high energy density (>150 mAh/g), high capacity, low self-discharge rate, and high coulombic efficiency. However, with the successful commercialization of LIBs, fire and explosion incidents are likely to increase. The thermal runaway is known as the major factor in battery-related accidents that can lead to a series of critical conditions. Considering this, recent studies have shown an increased interest in countering the safety issues associated with LIBs. Although safety standards for LIB use have recently been formulated, little attention has been paid to the safety around the manufacturing process for battery products. The present study introduces a risk assessment method suitable for assessing the safety of the LIB-manufacturing process. In the assessment method, a compensation parameter (Z-factor) is employed to correctly evaluate the process's safety on the basis of the type of material (e.g., metal anode, liquid electrolyte, solid-state electrolytes) utilized in a cell. The proposed method has been applied to an 18650 cell-manufacturing process, and three sub-processes have been identified as possibly vulnerable parts (risk index: >4). This study offers some crucial insights into the establishment of safety standards for battery-manufacturing processes.

Development of 50kW Grid-Connected Power Station Based on Li-Polymer Battery (리튬 폴리머 배터리 기반의 50kW급 계통연계형 파워스테이션 개발)

  • Jung, Doo-Yong;Won, Chung-Yuen;Choi, Byung-Jun;Kim, Dong-Sung;Han, Hee-Min;Seo, Kwang-Duk
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.249-251
    • /
    • 2009
  • In this paper, we present a study on the 50kW class power station development using lithium-polymer battery. The 50kW class power station purposes to compensate for peak load using 326[V] lithium-polymer battery bank. The output voltage is 380[V] in three-phase, peak load compensation is controlled based on load power. Finally, a 50kW power station system is built to verify the experiment.

  • PDF

The Development and Experimental Evaluation of 100kVA Unified Power Quality Conditioner interconnected to the Li-Battery System (리튬 배터리를 연계한 100kVA UPQC 개발 및 성능시험)

  • Lee, Hak-Ju;Chae, Woo-Kyu;Park, Jung-Sung;Sohn, Jin-Man;Choi, Eun-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.10
    • /
    • pp.102-110
    • /
    • 2012
  • This paper propose the advanced topology of UPQC, its DC link is connected with Lithium battery, to compensate the momentary interruptions. The proposed system can be operated as UPS mode using the parallel inverter, which control the charge or discharge of battery, in case of the interruption. We dvelop 100kVA UPQC using the proposed topology to rise the power quality and the reliability of Microgrid. We verify its usefulness through voltage compensation test, UPS operation test and etc. using Microgrid test facility.

Determination of the Hybrid Energy Storage Capacity for Wind Farm Output Compensation (풍력발전단지 출력보상용 하이브리드 에너지저장장치의 용량산정)

  • Kim, Seong Hyun;Jin, Kyung-Min;Oh, Sung-Bo;Kim, Eel-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.23-30
    • /
    • 2013
  • This paper presents the determination method of the hybrid energy storage capacity for compensating the output of wind power when disconnecting from the grid. In the wind power output compensation, a lot of charging and discharging time with lithium-ion battery will be deteriorated the life time. And also, this fluctuation will cause some problems of the power quality and power system stability. To solve these kind of problems, many researchers in the world have been studied with BESS(Battery Energy Storage System) in the wind farm. But, BESS has the limitation of its output during very short term period, this means that it is difficult to compensate the very short term output of wind farm. Using the EDLC (Electric Double Layer Capacitor), it is possible to solve the problem. Installing the battery system in the wind farm, it will be possible to decrease the total capacity of BESS consisting of HESS (Hybrid Energy Storage System). This paper shows simulation results when not only BESS is connected to wind farm but also to HESS. To verify the proposed system, results of computer simulation using PSCAD/EMTDC program with actual output data of wind farms of Jeju Island will be presented.

Development of a Bridge Transported Servo Manipulator System for the Remote Operation and Maintenance of Advanced Spent Fuel Conditioning Process (사용후 핵연료 차세대관리공정 원격 운전/유지보수용 천정이동 서보 매니퓰레이터 시스템 개발)

  • Park, Byung-Suk;Lee, Jong-Kwang;Lee, Hyo-Jik;Choi, Chang-Hwan;Yoon, Kwang-Ho;Yoon, Ji-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.940-948
    • /
    • 2007
  • The Advanced Spent Fuel Conditioning Process(ACP), which is the process of the reduction of uranium oxide by lithium metal in a high temperature molten salt bath for spent fuel, was developed at Korea Atomic Energy Research Institute (KAERI). Since the ACP equipment is located in an intense radiation field (hot cell) as well as in a high temperature, it must be remotely operated and maintained. The ACP hot cell is very narrow so the workspace of the wall-mounted mechanical Master-Slave Manipulators(MSMs) is restricted. A Bridge Transported Servo Manipulator(BTSM) system has been developed to overcome the limitation of an access that is a drawback of the mechanical MSMs. The BTSM system consists ot a bridge crane with telescoping tubeset, a slave manipulator, a master manipulator, and a control system. We applied a bilateral position-position control scheme with friction compensation as force-reflecting controller. In this paper, the transmission characteristics on the tendon-and-pulley train is numerically formulated and analyzed. Also, we evaluate the performance of the force-reflecting servo manipulator.

Implementation of the CC/CV Charge of the Wireless Power Transfer System for Electric Vehicle Battery Charge Applications (전기 자동차 배터리 충전 애플리케이션을 위한 무선 전력 전송 시스템의 CC/CV 충전의 구현)

  • Vu, Van-Binh;Tran, Duc-Hung;Pham, Van-Long;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.25-26
    • /
    • 2015
  • Inductive Power Transfer (IPT) method becomes more and more popular for the Electric Vehicle (EV) battery charger due to its convenience and safety in comparison with plugged-in charger. In recent years, Lithium batteries are increasingly used in EVs and Constant Current/Constant Voltage (CC/CV) charge needs to be adopted for the high efficiency charge. However, it is not easy to design the IPT Battery Charger which can charge the battery with CC/CV charge under the wide range of load variation due to the wide range of variation in its operating frequency. This paper propose a new design and control method which makes it possible to implement the CC/CV mode charge with minimum frequency variation (less than 1kHz) during all over the charge process. A 6.6kW prototype charge has been implemented and 96.1% efficiency was achieved with 20cm air gap between the coils.

  • PDF

Double-pass Second Harmonics Generation of Tunable CW Infrared Laser Beam of DOFA System in Periodically Poled LiNbO3 (PPLN 비선형 결정과 이중통과법을 이용한 DOFA 시스템에서 증폭된 연속발진형 파장가변 적외선 레이저광의 제 2고조파 발생)

  • Yoo, Kil-Sang;Jo, Jae-Heung;Ko, Kwang-Hoon;Lim, Gwon;Jeong, Do-Young
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.229-236
    • /
    • 2008
  • The optimum conditions of second harmonic generation (SHG) can be successfully achieved experimentally using single pass and double pass methods of a pumping beam. The beam has a power of several Watts radiated by a DOFA (Diode Laser Oscillator & Fiber Amplifier) system, which is a high power CW wavelength tunable infrared laser system, in a PPLN (Periodically Poled MgO doped Lithium Niobate) nonlinear crystal. In the case of a single pass method, the parameters are the wavelength of 535 nm for SHG and the output power of 245 mW generated from the pumping input beam with wavelength of 1070 nm and the power of 2.45 W at phase matching temperature of $108.9^{\circ}C$. The conversion efficiency of SHG was 10%. In order to enhance the output of SHG, the double pass method of the SHG system of a PPLN using a concave mirror for the retroreflection and a pair of wedged flat windows for phase compensation was also presented. In this double pass system, we obtained the SHG output beam with the wavelength of 535 nm and the maximum power of 383 mW at optimum phase matching temperature of $108.5^{\circ}C$ by using an incident pumping beam with wavelength of 1070 nm and the power of 2.45 W. The maximum conversion efficiency is 15.6%, which is more than that of the single pass method.