• Title/Summary/Keyword: Li-rich cathode material

Search Result 19, Processing Time 0.02 seconds

Synthesis of Li-rich Cathode Material with Spherical Shape and High Crystallinity by Using Flame Spray Pyrolysis (화염분무열분해법을 이용한 구형의 고결정성 리튬 과잉 양극재 제조)

  • Sung Nam Lim
    • New & Renewable Energy
    • /
    • v.20 no.3
    • /
    • pp.20-27
    • /
    • 2024
  • A Li-rich cathode material, Li1.167Mn0.548Ni0.18Co0.105O2, with a spherical shape and high crystallinity, is prepared using flame spray pyrolysis. The post-heat treatment condition influences the properties of the prepared material, such as its structure, morphology, and chemical composition, and optimum performance is achieved at 900℃. Various excess Li contents (0-12 wt.%) are introduced in the precursor solution to compensate for volatilized Li during synthesis, bringing it close to the target composition. Compensation for volatilized Li enhances the electrochemical performance, i.e., the Li-compensated sample shows a good discharge capacity of 247 mAh g-1 at a current density of 20 mA g-1 in a potential window of 4.6-2.5 V. In addition, the prepared Li-rich cathode material supplemented with 9 wt.% of the Li source shows increased discharge capacity of 175 and 148 mAh g-1 at 200 and 400 mA g-1, respectively, compared with those of a bare sample (164 and 127 mAh g-1, respectively).

Triphenyl phosphate as an Efficient Electrolyte Additive for Ni-rich NCM Cathode Materials

  • Jung, Kwangeun;Oh, Si Hyoung;Yim, Taeeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.67-73
    • /
    • 2021
  • Nickel-rich lithium nickel-cobalt-manganese oxides (NCM) are viewed as promising cathode materials for lithium-ion batteries (LIBs); however, their poor cycling performance at high temperature is a critical hurdle preventing expansion of their applications. We propose the use of a functional electrolyte additive, triphenyl phosphate (TPPa), which can form an effective cathode-electrolyte interphase (CEI) layer on the surface of Ni-rich NCM cathode material by electrochemical reactions. Linear sweep voltammetry confirms that the TPPa additive is electrochemically oxidized at around 4.83 V (vs. Li/Li+) and it participates in the formation of a CEI layer on the surface of NCM811 cathode material. During high temperature cycling, TPPa greatly improves the cycling performance of NCM811 cathode material, as a cell cycled with TPPa-containing electrolyte exhibits a retention (133.7 mA h g-1) of 63.5%, while a cell cycled with standard electrolyte shows poor cycling retention (51.3%, 108.3 mA h g-1). Further systematic analyses on recovered NCM811 cathodes demonstrate the effectiveness of the TPPa-based CEI layer in the cell, as electrolyte decomposition is suppressed in the cell cycled with TPPa-containing electrolyte. This confirms that TPPa is effective at increasing the surface stability of NCM811 cathode material because the TPPa-initiated POx-based CEI layer prevents electrolyte decomposition in the cell even at high temperatures.

Designing of a Novel Core-Shell-Structured Co-free Cathode Material with Enhanced Thermal and Structural Stability for Lithium Ion Batteries

  • Shin, Ji-Woong;Nam, Yun-Chae;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.4
    • /
    • pp.172-176
    • /
    • 2019
  • The first commercialized cathode material, $LiCoO_2$, suffers from disadvantages such as high cost and toxicity and also possesses safety problems. The nickel-rich $LiNi_{0.9}Mn_{0.1}O_2$ cathode material, used as an alternative to $LiCoO_2$, has highly reversible capacity and high energy density. So, the nickel-rich $LiNi_{0.9}Mn_{0.1}O_2$ cathode material is widely used as an alternative to $LiCoO_2$ due to its highly reversible capacity and high energy density. However, $LiNi_{0.9}Mn_{0.1}O_2$ has several disadvantages as well, such as poor cycle performance and poor thermal instability. To address these problems, we synthesized a new material, $LiNi_{0.5}Mn_{0.5}O_2$, as a shell on the surface of a core to suppress the surface degradation. The new material showed high structural and thermal stabilities and could also maintain a high capacity. The capacity retention of the core-shell cathode (87.7%) was better than that of the core cathode (76.9%) after 50 cycles. Analysis using differential scanning calorimetry revealed that the heat generation in the core-shell cathode ($65.9Jg^{-1}$) was lower than that in the core cathode ($559.7Jg^{-1}$).

Performances of Li-Ion Batteries Using LiNi1-x-yCoxMnyO2 as Cathode Active Materials in Frequency Regulation Application for Power Systems

  • Choi, Jin Hyeok;Kwon, Soon-Jong;Lim, Jungho;Lim, Ji-Hun;Lee, Sung-Eun;Park, Kwangyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.461-466
    • /
    • 2020
  • There are many application fields of electrical energy storage such as load shifting, integration with renewables, frequency or voltage supports, and so on. Especially, the frequency regulation is needed to stabilize the electric power system, and there have to be more than 1 GW as power reserve in Korea. Ni-rich layered oxide cathode materials have been investigated as a cathode material for Li-ion batteries because of their higher discharge capacity and lower cost than lithium cobalt oxide. Nonetheless, most of them have been investigated using small coin cells, and therefore, there is a limit to understand the deterioration mode of Ni-rich layered oxides in commercial high energy Li-ion batteries. In this paper, the pouch-type 20 Ah-scale Li-ion full cells are fabricated using Ni-rich layered oxides as a cathode and graphite as an anode. Above all, two test conditions for the application of frequency regulation were established in order to examine the performances of cells. Then, the electrochemical performances of two types of Ni-rich layered oxides are compared, and the long-term performance and degradation mode of the cell using cathode material with high nickel contents among them were investigated in the frequency regulation conditions.

Analysis for Atomic Structural Deterioration and Electrochemical Properties of Li-rich Cathode Materials for Lithium Ion Batteries (리튬이차전지용 리튬과잉계 양극 산화물의 충방전 과정 중 원자 구조 열화 과정과 전기화학 특성에 대한 분석)

  • Park, Seohyeon;Oh, Pilgun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.97-102
    • /
    • 2020
  • Recently, various degradation mechanisms of lithium secondary battery cathode materials have been revealed. As a result, many studies on overcoming the limitation of cathode materials and realizing new electrochemical properties by controlling the degradation mechanism have been reported. Li-rich layered oxide is one of the most promising cathode materials due to its high reversible capacity. However, the utilization of Li-rich layered oxide has been restricted, because it undergoes a unique atomic structure change during the cycle, in turn resulting in unwanted electrochemical degradations. To understand an atomic structure deterioration mechanism and suggest a research direction of Li-rich layered oxide, we deeply evaluated the atomic structure of 0.4Li2MnO3_0.6LiNi1/3Co1/3Mn1/3O2 Li-rich layered oxide during electrochemical cycles, by using an atomic-resolution analysis tool. During a charge process, Li-rich materials undergo a cation migration of transition metal ions from transition metal slab to lithium slab due to the structural instability from lithium vacancies. As a result, the partial structural degradation leads to discharge voltage drop, which is the biggest drawback of Li-rich materials.

A Study on the Development of Nanorod-Type Ni-Rich Cathode Materials by Using Co-Precipitation Method (공침법을 통한 나노로드 형태의 니켈계 양극 소재 개발에 관한 연구)

  • Joohyuk Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.215-222
    • /
    • 2024
  • Ni-rich cathode materials have been developed as the most promising candidates for next-generation cathode materials for lithium-ion batteries because of their high capacity and energy density. In particular, the electrochemical performance of lithium-ion batteries could be enhanced by increasing the contents of nickel ion. However, there are still limitations, such as low structural stability, cation mixing, low capacity retention and poor rate capability. Herein, we have successfully developed the nanorod-type Ni-rich cathode materials by using co-precipitation method. Particularly, the nanorod-type primary particles of LiNi0.7Co0.15Mn0.15O2 could facilitate the electron transfer because of their longitudinal morphology. Moreover, there were holes at the center of secondary particles, resulting in high permeability of the electrolyte. Lithium-ion batteries using the prepared nanorod-type LiNi0.7Co0.15Mn0.15O2 achieved highly improved electrochemical performance with a superior rate capability during battery cycling.

Changes in the Shape and Properties of the Precursor of the Rich-Ni Cathode Materials by Ammonia Concentration (암모니아 농도에 따른 Rich-Ni 양극 소재의 전구체 형태와 특성 변화)

  • Park, Seonhye;Hong, Soonhyun;Jeon, Hyeonggwon;Kim, Chunjoong
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.636-640
    • /
    • 2020
  • Due to the serious air pollution problem, interest in eco-friendly vehicles is increasing. Solving the problem of pollution will necessitate the securing of high energy storage technology for batteries, the driving force of eco-friendly vehicles. The reason for the continuing interest in the transition metal oxide LiMO2 as a cathode material with a layered structure is that lithium ions reveal high mobility in two-dimensional space. Therefore, it is important to investigate the effective intercalation and deintercalation pathways of Li+, which affect battery capacity, to understand the internal structure of the cathode particle and its effect on the electrochemical performance. In this study, for the cathode material, high nickel Ni0.8Co0.1Mn0.1(OH)2 precursor is synthesized by controlling the ammonia concentration. Thereafter, the shape of the primary particles of the precursor is investigated through SEM analysis; X-ray diffraction analysis is also performed. The electrochemical properties of LiNi0.8Co0.1Mn0.1O2 are evaluated after heat treatment.

Introducing an Efficient and Eco-Friendly Spray-Drying Process for the Synthesis of NCM Precursor for Lithium-ion Batteries

  • Hye-Jin Park;Seong-Ju Sim;Bong-Soo Jin;Hyun-Soo Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.168-177
    • /
    • 2024
  • Ni-rich cathode is one of the promising candidates for high-energy lithium-ion battery applications. Due to its specific capacity, easy industrialization, and good circulation ability, Ni-rich cathode materials have been widely used for lithium-ion batteries. However, due to the limitation of the co-precipitation method, including sewage pollution, and the instability of the long production cycles, developing a new efficient and environmentally friendly synthetic approach is critical. In this study, the Ni0.91Co0.06Mn0.03CO3 precursor powder was successfully synthesized by an efficient spray-drying method using carbonate compounds as a raw material. This Ni0.91Co0.06Mn0.03CO3 precursor was calcined by mixing with LiOH·H2O (5 wt% excess) at 480℃ for 5 hours and then sintered at two different temperatures (780℃/800℃) for 15 hours under an oxygen atmosphere to complete the cathode active material preparation, which is a key component of lithium-ion batteries. As a result, LiNi0.91Co0.06Mn0.03O2 cathode active material powders were obtained successfully via a simple sintering process on the Ni0.91Co0.06Mn0.03CO3 precursor powder. Furthermore, the obtained LiNi0.91Co0.06Mn0.03O2 cathode active material powders were characterized. Overall, the material sintered at 780℃ shows superior electrochemical performance by delivering a discharge capacity of 190.76 mAh/g at 1st cycle (0.1 C) and excellent capacity retention of 66.80% even after 50 cycles.

Stabilization of Nickel-Rich Layered Cathode Materials of High Energy Density by Ca Doping (칼슘 도핑을 통한 고 에너지 밀도를 가지는 Ni-rich 층상 구조형 양극 소재의 안정화)

  • Kang, Beomhee;Hong, Soonhyun;Yoon, Hongkwan;Kim, Dojin;Kim, Chunjoong
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.273-278
    • /
    • 2018
  • Lithium-ion batteries have been considered the most important devices to power mobile or small-sized devices due to their high energy density. $LixCoO_2$ has been studied as a cathode material for the Li-ion battery. However, the limitation of its capacity impedes the development of high capacity cathode materials with Ni, Mn, etc. in them. The substitution of Mn and Ni for Co leads to the formation of solid solution phase $LiNi_xMn_yCo_{1-x-y}O_2$ (NMC, both x and y < 1), which shows better battery performance than unsubstituted $LiCoO_2$. However, despite a high discharge capacity in the Ni-rich compound (Ni > 0.8 in the metal site), poor cycle retention capability still remains to be overcome. In this study, aiming to improve the stability of the physical and chemical bonding, we investigate the stabilization effect of Ca in the Ni-rich layered compound $Li(Ni_{0.83}Co_{0.12}Mn_{0.05})O_2$, and then Ca is added to the modified secondary particles to lower the degree of cationic mixing of the final particles. For the optimization of the final grains added with Ca, the Ca content (x = 0, 2.5, 5.0, 10.0 at.%) versus Li is analyzed.

Selective doping of Li-rich layered oxide cathode materials for high-stability rechargeable Li-ion batteries

  • Han, Dongwook;Park, Kwangjin;Park, Jun-Ho;Yun, Dong-Jin;Son, You-Hwan
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.180-186
    • /
    • 2018
  • We report the discovery of Li-rich $Li_{1+x}[(Ni_{0.225}Co_{0.15}Mn_{0.625})_{1-y}V_y]O_2$ as a cathode material for rechargeable lithium-ion batteries in which a small amount of tetravalent vanadium ($V^{4+}$) is selectively and completely incorporated into the manganese sites in the lattice structure. The unwanted oxidation of vanadium to form a $V_2O_5-like$ secondary phase during high-temperature crystallization is prevented by uniformly dispersing the vanadium ions in coprecipitated $[(Ni_{0.225}Co_{0.15}Mn_{0.625})_{1-y}V_y](OH)_2$ particles. Upon doping with $V^{4+}$ ions, the initial discharge capacity (>$275mA\;h\;g^{-1}$), capacity retention, and voltage decay characteristics of the Li-rich layered oxides are improved significantly in comparison with those of the conventional undoped counterpart.