DOI QR코드

DOI QR Code

Gamma/neutron classification with SiPM CLYC detectors using frequency-domain analysis for embedded real-time applications

  • Ivan Rene Morales (Multidisciplinary Laboratory (MLab), STI Unit, The Abdus Salam International Centre for Theoretical Physics (ICTP)) ;
  • Maria Liz Crespo (Multidisciplinary Laboratory (MLab), STI Unit, The Abdus Salam International Centre for Theoretical Physics (ICTP)) ;
  • Mladen Bogovac (Nuclear Science and Instrumentation Laboratory, Physics Section, Division of Physical & Chemical Sciences, Department of Nuclear Sciences & Applications, Vienna International Centre) ;
  • Andres Cicuttin (Multidisciplinary Laboratory (MLab), STI Unit, The Abdus Salam International Centre for Theoretical Physics (ICTP)) ;
  • Kalliopi Kanaki (Nuclear Science and Instrumentation Laboratory, Physics Section, Division of Physical & Chemical Sciences, Department of Nuclear Sciences & Applications, Vienna International Centre) ;
  • Sergio Carrato (Dipartimento di Ingegneria e Architettura (DIA), Università degli Studi di Trieste (UNITS))
  • Received : 2023.07.03
  • Accepted : 2023.11.07
  • Published : 2024.02.25

Abstract

A method for gamma/neutron event classification based on frequency-domain analysis for mixed radiation environments is proposed. In contrast to the traditional charge comparison method for pulse-shape discrimination, which requires baseline removal and pulse alignment, our method does not need any preprocessing of the digitized data, apart from removing saturated traces in sporadic pile-up scenarios. It also features the identification of neutron events in the detector's full energy range with a single device, from thermal neutrons to fast neutrons, including low-energy pulses, and still provides a superior figure-of-merit for classification. The proposed frequency-domain analysis consists of computing the fast Fourier transform of a triggered trace and integrating it through a simplified version of the transform magnitude components that distinguish the neutron features from those of the gamma photons. Owing to this simplification, the proposed method may be easily ported to a real-time embedded deployment based on Field-Programmable Gate Arrays or Digital Signal Processors. We target an off-the-shelf detector based on a small CLYC (Cs2LiYCl6:Ce) crystal coupled to a silicon photomultiplier with an integrated bias and preamplifier, aiming at lightweight embedded mixed radiation monitors and dosimeter applications.

Keywords

References

  1. R.T. Kouzes, A.T. Lintereur, E.R. Siciliano, Progress in alternative neutron detection to address the helium-3 shortage, Nucl. Instrum. Methods Phys. Res. A 784 (2015) 172-175, http://dx.doi.org/10.1016/j.nima.2014.10.046. 
  2. J. Glodo, Y. Wang, R. Shawgo, C. Brecher, R.H. Hawrami, J. Tower, K.S. Shah, New developments in scintillators for security applications, Physics Procedia 90 (2017) 285-290, http://dx.doi.org/10.1016/j.phpro.2017.09.012. 
  3. A. Dutta, P. Chandhran, K.E. Holbert, E.B. Johnson, Using decay time to discriminate neutron and gamma ray pulses from a CLYC detector, in: 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC, IEEE, San Diego, California, USA, 2015, pp. 1-7, http://dx.doi.org/10.1109/NSSMIC.2015.7581902. 
  4. A.M. Okowita, Characterization of Lithium-6 as a Commercial Helium-3 Alternative for Nuclear Safeguards and Security (Master's thesis), University of Tennessee - Knoxville, Knoxville, Tennessee, 2014, URL https://trace.tennessee.edu/utk_gradthes/3166. 
  5. N. D'Olympia, P. Chowdhury, E. Jackson, C. Lister, Fast neutron response of 6Li-depleted CLYC detectors up to 20MeV, Nucl. Instrum. Methods Phys. Res. A 763 (2014) 433-441, http://dx.doi.org/10.1016/j.nima.2014.06.074. 
  6. C.M. Whitney, L. Soundara-Pandian, E.B. Johnson, S. Vogel, B. Vinci, M. Squillante, J. Glodo, J.F. Christian, Gamma-neutron imaging system utilizing pulse shape discrimination with CLYC, Nucl. Instrum. Methods Phys. Res. A 784 (2015) 346-351, http://dx.doi.org/10.1016/j.nima.2014.09.022. 
  7. F. Ferrulli, M. Labalme, M. Silari, Investigation of CLYC-6 for thermal neutron detection and CLYC-7 for fast neutron spectrometry, Nucl. Instrum. Methods Phys. Res. A 1029 (2022) 166460, http://dx.doi.org/10.1016/j.nima.2022.166460. 
  8. B. Budden, L. Stonehill, N. Dallmann, M. Baginski, D. Best, M. Smith, S. Graham, C. Dathy, J. Frank, M. McClish, A Cs2LiYCl6:Ce-based advanced radiation monitoring device, Nucl. Instrum. Methods Phys. Res. A 784 (2015) 97-104, http://dx.doi.org/10.1016/j.nima.2014.11.051. 
  9. M. Bourne, C. Mussi, E. Miller, S. Clarke, S. Pozzi, A. Gueorguiev, Characterization of the CLYC detector for neutron and photon detection, Nucl. Instrum. Methods Phys. Res. A 736 (2014) 124-127, http://dx.doi.org/10.1016/j.nima.2013.10.030. 
  10. M. Smith, M. McClish, T. Achtzehn, H. Andrews, M. Baginski, D. Best, B. Budden, E. Clifford, N. Dallmann, C. Dathy, J. Frank, S. Graham, H. Ing, L. Stonehill, Assessment of photon detectors for a handheld gamma-ray and neutron spectrometer using Cs2LiYCl6:Ce (CLYC) scintillator, Nucl. Instrum. Methods Phys. Res. A 715 (2013) 92-97, http://dx.doi.org/10.1016/j.nima.2013.03.023. 
  11. A. Giaz, L. Pellegri, F. Camera, N. Blasi, S. Brambilla, S. Ceruti, B. Million, S. Riboldi, C. Cazzaniga, G. Gorini, M. Nocente, A. Pietropaolo, M. Pillon, M. Rebai, M. Tardocchi, The CLYC-6 and CLYC-7 response to γ-rays, fast and thermal neutrons, Nucl. Instrum. Methods Phys. Res. A 810 (2016) 132-139, http://dx.doi.org/10.1016/j.nima.2015.11.119. 
  12. M. Smith, T. Achtzehn, H. Andrews, E. Clifford, P. Forget, J. Glodo, R. Hawrami, H. Ing, P. O'Dougherty, K. Shah, U. Shirwadkar, L. Soundara-Pandian, J. Tower, Fast neutron measurements using Cs2LiYCl6:Ce (CLYC) scintillator, Nucl. Instrum. Methods Phys. Res. A 784 (2015) 162-167, http://dx.doi.org/10.1016/j.nima.2014.09.021. 
  13. F. Pino, M. Polo, J.C. Delgado, G. Mantovani, S.M. Carturan, D. Fabris, D. Brunelli, L. Pancheri, A. Quaranta, S. Moretto, Evidence of fast neutron detection capability of the CLLB scintillation detector, Radiat. Phys. Chem. 202 (2023) 110494, http://dx.doi.org/10.1016/j.radphyschem.2022.110494. 
  14. T. Huang, Q. Fu, S. Lin, B. Wang, NaI(Tl) scintillator read out with SiPM array for gamma spectrometer, Nucl. Instrum. Methods Phys. Res. A 851 (2017) 118-124, http://dx.doi.org/10.1016/j.nima.2017.01.068. 
  15. D.D. Vita, L. Buonanno, F. Canclini, G. Ticchi, F. Camera, M. Carminati, C. Fiorini, A 144-SiPM 3'' LaBr3 readout module for PMTs replacement in Gamma spectroscopy, Nucl. Instrum. Methods Phys. Res. A 1040 (2022) 167179, http: //dx.doi.org/10.1016/j.nima.2022.167179. 
  16. J. Hartman, A. Barzilov, I. Novikov, Remote sensing of neutron and gamma radiation using aerial unmanned autonomous system, in: 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC, IEEE, San Diego, CA, USA, 2015, pp. 1-4, http://dx.doi.org/10.1109/NSSMIC.2015.7581763. 
  17. O. Dendene, V.V. Afanasiev, S.V. Lushin, A.C. Chergui, A.A. Stifutkin, L. Boukerdja, Study of silicon photomultipliers (SiPM) with organic scintillator for neutron diagnostics of thermonuclear plasma, Fusion Eng. Des. 178 (2022) 113113, http://dx.doi.org/10.1016/j.fusengdes.2022.113113. 
  18. J. Kohler, B. Ehresmann, C. Zeitlin, R. Wimmer-Schweingruber, D. Hassler, G. Reitz, D. Brinza, J. Appel, S. Bottcher, E. Bohm, S. Burmeister, J. Guo, H. Lohf, C. Martin, A. Posner, S. Rafkin, Measurements of the neutron spectrum in transit to Mars on the Mars science laboratory, Life Sci. Space Res. 5 (2015) 6-12, http://dx.doi.org/10.1016/j.lssr.2015.03.001. 
  19. M.J. Safari, F.A. Davani, H. Afarideh, S. Jamili, E. Bayat, Discrete Fourier transform method for discrimination of digital scintillation pulses in mixed neutron-Gamma fields, IEEE Trans. Nucl. Sci. 63 (2016) 325-332, http://dx.doi.org/10.1109/TNS.2016.2514400. 
  20. M. Nakhostin, Digital discrimination of neutrons and gamma-rays in liquid scintillation detectors by using low sampling frequency ADCs, Nucl. Instrum. Methods Phys. Res. A 916 (2019) 66-70, http://dx.doi.org/10.1016/j.nima.2018.11.021. 
  21. J. Polack, M. Flaska, A. Enqvist, C. Sosa, C. Lawrence, S. Pozzi, An algorithm for charge-integration, pulse-shape discrimination and estimation of neutron/photon misclassification in organic scintillators, Nucl. Instrum. Methods Phys. Res. A 795 (2015) 253-267, http://dx.doi.org/10.1016/j.nima.2015.05.048. 
  22. O. McCormack, L. Giacomelli, G. Croci, A. Muraro, G. Gorini, G. Grosso, R. Pasqualotto, E.P. Cippo, M. Rebai, D. Rigamonti, M. Tardocchi, Characterization and operational stability of EJ276 plastic scintillator-based detector for neutron spectroscopy, J. Instrum. 16 (2021) P10002, http://dx.doi.org/10.1088/1748-0221/16/10/P10002. 
  23. W. Zhou, T. Cui, Z. Zhang, Y. Yang, H. Yi, D. Hou, Measurement of wide energy range neutrons with a CLYC(Ce) scintillator, J. Instrum. 18 (2023) P02014, http://dx.doi.org/10.1088/1748-0221/18/02/P02014. 
  24. Scionix Holland B.V., Thermal neutron detector V12.7B30/SIP-E3-CLYC-x datasheet - Scionix, 2017, URL https://scionix.nl/wp-content/uploads/2017/03/V12.7B30_SIP-E3-CLYC-X.pdf. (Accessed 19 May 2023). 
  25. M.C. Recker, Enabling Mobile Neutron Detection Systems with CLYC (Ph.D. thesis), Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, 2019. 
  26. P.A. Rodnyi, Core-valence luminescence in scintillators, Radiat. Meas. 38 (2004) 343-352, http://dx.doi.org/10.1016/j.radmeas.2003.11.003. 
  27. J. Glodo, U. Shirwadkar, R. Hawrami, T. Achtzehn, H.R. Andrews, E.T.H. Clifford, H. Ing, V.D. Kovaltchouk, M.B. Smith, K.S. Shah, Fast neutron detection with Cs2LiYCl6, IEEE Trans. Nucl. Sci. 60 (2013) 864-870, http://dx.doi.org/10.1109/TNS.2012.2227499. 
  28. N. Dinar, D. Celeste, M. Silari, V. Varoli, A. Fazzi, Pulse shape discrimination of CLYC scintillator coupled with a large SiPM array, Nucl. Instrum. Methods Phys. Res. A 935 (2019) 35-39, http://dx.doi.org/10.1016/j.nima.2019.04.099. 
  29. S. West, D. Beckman, D. Coupland, N. Dallmann, C. Hardgrove, K. Mesick, L. Stonehill, Compact readout of large CLYC scintillators with silicon photomultipler arrays, Nucl. Instrum. Methods Phys. Res. A 951 (2020) 162928, http://dx.doi.org/10.1016/j.nima.2019.162928. 
  30. T. Huang, Z. Zhang, Characterization of 1-inch CLYC scintillator coupled with 8 × 8 SiPM array, Nucl. Instrum. Methods Phys. Res. A 999 (2021) 165225, http://dx.doi.org/10.1016/j.nima.2021.165225. 
  31. M. Altayeb, M. Zennaro, E. Pietrosemoli, Tinyml Gamma radiation classifier, Nucl. Eng. Technol. 55 (2023) 443-451, http://dx.doi.org/10.1016/j.net.2022.09.032. 
  32. B.S. Budden, A.J. Couture, L.C. Stonehill, A.V. Klimenko, J.R. Terry, J.O. Perry, Analysis of Cs2LiYCl6:Ce3+ (CLYC) waveforms as read out by solid state photomultipliers, in: 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, NSS/MIC, IEEE, Anaheim, California, USA, 2012, pp. 347-350, http://dx.doi.org/10.1109/NSSMIC.2012.6551123. 
  33. Nuclear Science and Instrumentation Newsletter No. 3, February 2022, Nuclear Science and Instrumentation Newsletter, (no. 3) INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 2022. 
  34. G.F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, 2010. 
  35. L.G. Garcia, R.S. Molina, M.L. Crespo, S. Carrato, G. Ramponi, A. Cicuttin, I.R. Morales, H. Perez, Muon-electron pulse shape discrimination for water Cherenkov detectors based on FPGA/SoC, Electronics 10 (2021) 224, http://dx.doi.org/10.3390/electronics10030224. 
  36. L.H. Arnaldi, D. Cazar, M. Audelo, I. Sidelnik, The new data acquisition system of the LAGO collaboration based on the redpitaya board, in: 2020 Argentine Conference on Electronics, CAE, IEEE, Buenos Aires, Argentina, 2020, pp. 87-92, http://dx.doi.org/10.1109/CAE48787.2020.9046374. 
  37. S. Moretto, F.P. Andrades, J. Delgado, C. Fontana, D. Fabris, G. Nebbia, M. Turcato, D. Brunelli, L. Pancheri, A. Quaranta, UAV prototype for localization and identification of radioactive contamination and emitters, EPJ Web Conf. 253 (2021) 08001, http://dx.doi.org/10.1051/epjconf/202125308001. 
  38. P. Dejdar, P. Munster, T. Horvath, High-speed data acquisition and signal processing using cost effective ARM + FPGA processors, in: 2019 42nd International Conference on Telecommunications and Signal Processing, TSP, IEEE, Budapest, Hungary, 2019, pp. 593-596, http://dx.doi.org/10.1109/TSP.2019.8769055. 
  39. R.E. Wurtz, Consistent principles for particle ID from PSD systems, in: A. Burger, R.B. James, S.A. Payne (Eds.), Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XXI, SPIE, San Diego, California, United States, 2019, p. 34, http://dx.doi.org/10.1117/12.2528898. 
  40. H. Ye, L. Chen, X. Xu, G. Jin, Fast FPGA algorithm for neutron-gamma discrimination, Nucl. Instrum. Methods Phys. Res. A 1027 (2022) 166256, http://dx.doi.org/10.1016/j.nima.2021.166256. 
  41. M.E. Hammad, H. Kasban, R.M. Fikry, M.I. Dessouky, O. Zahran, S.M.S. Elaraby, F.E.A. El-Samie, Digital pulse processing algorithm for neutron and gamma rays discrimination, Analog Integr. Circuits Signal Process. 101 (2019) 475-487, http://dx.doi.org/10.1007/s10470-019-01498-8. 
  42. H. Kasani, S. Ashrafi, N. Ghal-Eh, H.R. Vega-Carrillo, Gamma-ray spectroscopy with anode pulses of NaI(Tl) detector using a low-cost digitizer system, Appl. Radiat. Isot. 176 (2021) 109854, http://dx.doi.org/10.1016/j.apradiso.2021.109854. 
  43. S.-X. Liu, W. Zhang, Z.-H. Zhang, S. Lin, H.-R. Cao, C.-X. Song, J.-L. Zhao, G.-Q. Zhong, Performance of real-time neutron/gamma discrimination methods, Nucl. Sci. Tech. 34 (2023) 8, http://dx.doi.org/10.1007/s41365-022-01160-5. 
  44. H. Bai, G. Zhang, Z. Xiong, Y. Li, D. Zhao, M. Su, Z. Mo, X. Wang, F. Gao, H. Zhang, Z. Zhang, J. Wen, A method to calibrate the n-γ discrimination property of scintillators in low energy region, Appl. Radiat. Isot. 167 (2021) 109447, http://dx.doi.org/10.1016/j.apradiso.2020.109447. 
  45. E.O. Brigham, R.E. Morrow, The fast Fourier transform, IEEE Spectr. 4 (1967) 63-70, http://dx.doi.org/10.1109/MSPEC.1967.5217220. 
  46. A.V. Oppenheim, A.S. Willsky, S.H. Nawab, Signals and Systems, Prentice Hall, London, 1997. 
  47. T. Alharbi, Distance metrics for digital pulse-shape discrimination of scintillator detectors, Radiat. Phys. Chem. 156 (2019) 205-209, http://dx.doi.org/10.1016/j.radphyschem.2018.11.014. 
  48. A. Cicuttin, I.R. Morales, M.L. Crespo, S. Carrato, L.G. Garcia, R.S. Molina, B. Valinoti, J.F. Kamdem, A simplified correlation index for fast real-time pulse shape recognition, Sensors 22 (2022) 7697, http://dx.doi.org/10.3390/s22207697. 
  49. I.R. Morales, Gamma and neutron tagged dataset from CLYC SiPM detector, 2023, http://dx.doi.org/10.5281/zenodo.8037058, URL https://zenodo.org/record/8037239. (Accessed 14 June 2023).