• Title/Summary/Keyword: SiPM

Search Result 854, Processing Time 0.035 seconds

Characteristics Analysis of SiPM for Detection of High Sensitivity of Portable Detectors (휴대용 검출기의 방사선 고감도 검출을 위한 SiPM 특성 분석)

  • Byung-Wuk Kang;Sun-Kook Yoo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.897-902
    • /
    • 2023
  • The purpose of this paper is to analyze the characteristics of Silicon Photomultiplier (SiPM) for the realization of high-sensitivity radiation detection in portable detectors. Portable X-ray detectors offer the advantage of quickly accessing the patient's location and obtaining real-time images, allowing physicians to perform rapid diagnoses. However, this mobility comes with challenges in achieving accurate radiation detection. In existing detectors, SiPM is used for a simple purpose of detecting X-ray triggers. To verify the feasibility of high-sensitivity X-ray detection through SiPM, seven types of SiPM sensors were compared and selected, and their characteristics were analyzed. The SiPM used in the final test demonstrated the ability to distinguish signals at the ultra-low radiation level of 10 nGy, and it was observed that the slope of the signal rise curve varies with the X-ray tube voltage. Utilizing the characteristics of SiPM, which exhibits changes in signal level and duration with X-ray dose, it appears possible to achieve high-sensitivity measurements for X-ray detection.

The design of a scintillation system based on SiPMs integrated with gain correction functionality

  • Lin, Zhenhua;Hautefeuille, Benoit;Jung, Sung-Hee;Moon, Jinho;Park, Jang-Guen
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.164-169
    • /
    • 2020
  • Use of SiPM has been considered as an alternative to PMT, because of its compact size, low-operating voltage, non-sensitive to electromagnetic, low costs and so on. The main limitation for the use of SiPM is due to its small sensitive area compared to PMT that limits the light collection, and therefore the sensor energy resolution. In this article we studied the effect of increasing the number of SiPM by connecting them in parallel to increase the active detection area. This allowed us to compare the different energy resolution measurements. 137Cs has been selected as reference to study the energy resolution for 662 keV gamma-rays. Another investigation was to compare the minimum detectable gamma energy under various SiPM configurations. It has been found that the use of 4 SiPM arrays can greatly improve the energy resolution up to 4% than only one SiPM array, meanwhile use of more than 2 SiPM arrays does not increase the energy resolution significantly. Thus we can conclude that for a large area of cylindrical scintillator (3 × 3 inches), the use of SiPMs are limited to a certain number or certai active area depending on the commercial SiPMs, and its cost should be less than traditional PMT for the cost-effective and compact size considerations. It is well known that the gain of SiPM varies with temperature. In this article, we also calibrated gain to guarantee the same position of photoelectric peak in response of different temperatures.

The detection efficiency study of NaI(Tl) scintillation detector with the different numbers of SiPMs

  • Wang, Bao;Zhang, Xiongjie;Wang, Qingshan;Wang, Dongyang;Li, Dong;Xiahou, Mingdong;Zhou, Pengfei;Ye, Hao;Hu, Bin;Zhang, Lijiao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2564-2571
    • /
    • 2022
  • SiPMs are generally coupled into whole columns in gamma energy spectrum measurement, but the relationship between the distribution of whole SiPM columns and the energy resolution of the measured energy spectra is rarely reported. In this work, ∅ 3 × 3 inch NaI scintillator is placed on an 8 × 8 SiPM array, and the energy resolution of the 137Cs peak at 662 keV corresponding to the γ-ray is selected as a reference. Each SiPM is switched to explore the influence of the number of SiPM arrays, distribution position, and reflective layer on the energy resolution of SiPMs. Results show that without coupling, the energy resolution is greatly improved when the number of SiPMs ranges from 4 to 32. However, after 32 slices (the area covered by SiPMs relative to the scintillator reaches 25.9%), the improvement in energy resolution and total pulse count is not obvious. In addition, the position of SiPMs relative to the scintillator does not exert much impact on the energy resolution. Results also indicate that by adding a reflective film (ESR), the energy resolution of the tested group increases by 10.38% on average. This work can provide a reference for the design and application of miniaturized SiPM gamma spectrometers.

Development of High-Sensitivity and Entry-Level Radiation Measuring Sensor Module (고감도 보급형 방사선 측정센서 모듈 개발)

  • Oh, Seung-Jin;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.510-514
    • /
    • 2022
  • In this paper, we propose the development of high-sensitivity low-end radiation measuring sensor module. The proposed measurement sensor module is a scintillator + photomultiplier(SiPM) sensor optimization structure design, amplification and filter and control circuit design for sensor driver, control circuit design including short-distance communication, sensor mechanism design and manufacturing, and GUI development applied to prototypes consists of, etc. The scintillator + photomultiplier(SiPM) sensor optimization structure design is designed by checking the characteristics of the scintillator and the photomultiplier (SiPM) for the sensor structure design. Amplification, filter and control circuit design for sensor driver is designed to process fine scintillation signal generated by radiation with a scintillator using SiPM. Control circuit design including short-distance communication is designed to enable data transmission through MCU design to support short-range wireless communication function and wired communication support. The sensor mechanism design and manufacture is designed so that the glare generated by wrapping a reflective paper (mirroring) on the outside of the plastic scintillator is reflected to increase the efficiency in order to transmit the fine scintillation signal generated from the plastic scintillator to the photomultiplier(SiPM). The GUI development applied to the prototype expresses the date and time at the top according to each screen and allows the measurement unit and time, seconds, alarm level, communication status, battery capacity, etc. to be expressed. In order to evaluate the performance of the proposed system, the results of experiments conducted by an authorized testing institute showed that the radiation dose measurement range was 30 𝜇Sv/h ~ 10 mSv/h, so the results are the same as the highest level among products sold commercially at domestic and foreign. In addition, it was confirmed that the measurement uncertainty of ±7.4% was measured, and normal operation was performed under the international standard ±15%.

Identification Factor Development of Particulate Matters Emitted from Coal-fired Power Plant by FE-SEM/EDX Analysis (FE-SEM/EDX 분석법을 이용한 석탄화력발전소에서 배출되는 입자상물질의 확인자 개발)

  • Park, Jeong-Ho
    • Journal of Environmental Science International
    • /
    • v.26 no.12
    • /
    • pp.1333-1339
    • /
    • 2017
  • Coal-fired power plants emit various Particulate Matter(PM) at coal storage pile and ash landfill as well as the stack, and affect the surrounding environment. Field Emission Scanning Electron Microscopy and Energy Dispersive X-ray analyzer(FE-SEM/EDX) were used to develop identification factor and the physico-chemical analysis of PM emitted from a power plant. In this study, three samples of pulverized coal, bottom ash, and fly ash were analyzed. The pulverized coal was spherical particles in shape and the chemical composition of C-O-Si-Al and C/Si and C/Al ratios were 200~300 on average. The bottom ash was spherical or non-spherical particles in shape, chemical composition was O-C-Si-Al-Fe-Ca and C/Si and C/Al ratios were $4.3{\pm}4.6$ and $8.8{\pm}10.0$. The fly ash was spherical particles in shape, chemical composition was O-Si-Ai-C-Fe-Ca and C/Si and C/Al ratios were $0.5{\pm}0.2$ and $0.8{\pm}0.5$.

Feasibility study of SiPM based scintillation detector for dual-energy X-ray absorptiometry

  • Park, Chanwoo;Song, Hankyeol;Joung, Jinhun;Kim, Yongkwon;Kim, Kyu Bom;Chung, Yong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2346-2352
    • /
    • 2020
  • Dual-energy x-ray absorptiometry (DXA) is the noninvasive method to diagnose osteoporosis disease characterized by low bone mass and deterioration of bone tissue. Many global companies and research groups have developed the various DXA detectors using a direct photon-counting detector such as a cadmium zinc telluride (CZT) sensor. However, this approach using CZT sensor has some drawback such as the limitation of scalability by high cost and the loss of efficiency due to the requirement of a thin detector. In this study, a SiPM based DXA system was developed and its performance evaluated experimentally. The DXA detector was composed of a SiPM sensor coupled with a single LYSO scintillation crystal (3 × 3 × 2 ㎣). The prototype DXA detector was mounted on the dedicated front-end circuit consisting of a voltage-sensitive preamplifier, pulse shaping amplifier and constant fraction discriminator (CFD) circuit. The SiPM based DXA detector showed the 34% (at 59 keV) energy resolution with good BMD accuracy. The proposed SiPM based DXA detector showed the performance comparable to the conventional DXA detector based on CZT.

Competitive Photochlorination Reactions of Silane, di-Chloro and tri-Chlorosilanes at 337.1 nm

  • Jung, Kyung-Hoon;Jung, Kwang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.242-246
    • /
    • 1987
  • The hydrogen abstraction reactions of $SiH_4, SiH_2Cl_2 \;and\; SiHCl_3$ by ground state chlorine atoms generated photochemically from chlorine molecules have been studied at temperatures between 15 and $100^{\circ}C.$ The absolute rates for the reactions have been obtained by a competition technique using ethane as a competitor. The rate expressions ($in cm^3/mol/s$) are found to conform to an Arrhenius rate law: $k_{SiH_4} = (7.98 {\pm} 0.42) {\times} 10^{13}$ exp $[-(1250 {\pm}20)/T].$ $k_{SiH_2Cl_2} = (2.25 {\pm} 0.12) {\times} 10^{15}$ exp[-(1010 ${\pm}$ 10)/T]. $k_{SiHCl_3} = (9.04 {\pm} 0.28) {\times} 10^{14}\; exp[-(1200 {\pm} 10)/T].$ The activation energies obtained from this study represent the same trend as with the carbon analogues, while this trend was not found with respect to the bond dissociation energies among silicon compound homologues. These anomalous behaviors were interpreted in terms of electronic effects and of the structural differences between these compounds.

Thermoluminescent Response of Thin LiF:Mg,Cu,Na,Si Detectors to Beta Radiation (얇은 LiF:Mg,Cu,Na,Si 검출기의 베타선장에 대한 TL 반응)

  • Nam, Y.M.;Kim, J.L.;Chang, S.Y.;Cho, H.W.;Kim, H.J.
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.1
    • /
    • pp.39-43
    • /
    • 1999
  • Thermoluminescent (TL) response characteristics of a thin LiF:Mg,Cu,Na,Si Teflon detectors have been studied for use in beta radiation detection. The detectors were fabricated from a mixture of LiF:Mg,Cu,Na,Si phosphor and Teflon powder which was molded into a thin disk form of $50mg/cm^2$ thickness. These detectors were irradiated to beta fields of $^{147}Pm,\;^{204}Tl\;and\;^{90}Sr/^{90}Y$ sources with a covering of Kapton foil ($2mg/cm^2$) and photon irradiation was carried out with a $^{137}Cs$ source at the Korea Atomic Energy Research Institute (KAERI). Batch uniformity was estimated to be 4.7% and the beta dose response presented linear relationship from 0.1 mGy to 100 Gy. The beta energy responses of thin detectors normalized to $^{137}Cs$ were presented as 0.46, 1.09 and 1.06 for $^{147}Pm,\;^{204}Tl\;and\;^{90}Sr/^{90}Y$ beta rays, respectively. The evaluated values for angular responses were $0.93{\pm}0.03\;(^{147}Pm),\;0.94{\pm}0.04\;(^{204}Tl),\;and\;0.92{\pm}0.05\;(^{90}Sr/^{90}Y)$. The results satisfied well a proposed ISO Standard for beta ray dosimeters.

  • PDF

The buckled structure of clean Si(001) surface : $a(2\times1)과\; c(4\times2)$ (깨끗한 Si(001) 표면의 buckled dimer 구조 연구 : $a(2\times1)과\; c(4\times2)$)

  • 김성수;김용욱;박노길;조원석;조원석;김주영;채근화;황정남;김기석
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.1
    • /
    • pp.5-10
    • /
    • 1998
  • The geometric structure of dimer atoms on clean Si(001) surface was studied using CAICISS. We confirmed that dimer atoms were certainly buckled, and also found that asymmetry (2$\times$1) and c(4$\times$2) were coexisted. The intradimer bond length and the buckling angle of a dimer measured by CAICISS system were 2.3$\pm$0.1 $\AA$ and 18$\pm$$1^{\circ}$, respectively.

  • PDF

Study of Apparent Diffusion Coefficient Changes According to Spinal Disease in MR Diffusion-weighted Image

  • Heo, Yeong-Cheol;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.146-149
    • /
    • 2017
  • In this study, we compared the standardized value of each signal intensity, the apparent diffusion coefficient (ADC) that digitizes the diffusion of water molecules, and the signal to noise ratio (SNR) using b value 0 400, 1400 ($s/mm^2$). From March 2013 to December 2013, patients with suspicion of simple compound fracture and metastatic spine cancer were included in the MR readout. We used a 1.5 Tesla Achieva MRI system and a Syn-Spine Coil. Sequence is a DWI SE-EPI sagittal (diffusion weighted imaging spin echo-echo planar imaging sagittal) image with b-factor ($s/mm^2$) 0, 400, 1400 were used. Data analysis showed ROI (Region of Interest) in diseased area with high SI (signal intensity) in diffusion-weighted image b value 0 ($s/mm^2$) Using the MRIcro program, each SI was calculated with images of b-value 0, 400, and 1400 ($s/mm^2$), ADC map was obtained using Metlab Software with each image of b-value, The ADC is obtained by applying the ROI to the same position. The standardized values ($SI_{400}/SI_0$, $SI_{400}/SI_0$) of simple compression fractures were $0.47{\pm}0.04$ and $0.23{\pm}0.03$ and the standardized values ($SI_{400}/SI_0$, $SI_{400}/SI_0$) of the metastatic spine were $0.57{\pm}0.07$ and $0.32{\pm}0.08$ And the standardized values of the two diseases were statistically significant (p < 0.05). The ADC ($mm^2/s$) for b value 400 ($s/mm^2$) and 1400 ($s/mm^2$) of the simple compression fracture disease site were $1.70{\pm}0.16$ and $0.93{\pm}0.28$ and $1.24{\pm}0.21$ and $0.80{\pm}0.15$ for the metastatic spine. The ADC ($mm^2/s$) for b value 400($s/mm^2$) was statistically significant (p < 0.05) but the ADC ($mm^2/s$) for b value 1400 (p > 0.05). In conclusion, multi - b value recognition of signal changes in diffusion - weighted imaging is very important for the diagnosis of various spinal diseases.