DOI QR코드

DOI QR Code

Neutron dosimetry with a pair of TLDs for the Elekta Precise medical linac and the evaluation of optimum moderator thickness for the conversion of fast to thermal neutrons

  • Marziyeh Behmadi (Cancer Research Center, Semnan University of Medical Sciences) ;
  • Sara Mohammadi (Medical Physics Department, Gonabad University of Medical Sciences) ;
  • Mohammad Ehsan Ravari (Medical Physics Department, Faculty of Medicine, Semnan University of Medical Sciences) ;
  • Aghil Mohammadi (Energy Engineering and Physics Department, Amir Kabir University of Technology) ;
  • Mahdy Ebrahimi Loushab (Department of Physics, Faculty of Shahid Rajaee, Quchan Branch, Technical and Vocational University (TVU)) ;
  • Mohammad Taghi Bahreyni Toossi (Medical Physics Research Center, Mashhad University of Medical Sciences) ;
  • Mitra Ghergherehchi (Department of Electrical and Computer Engineering, Sungkyunkwan University)
  • 투고 : 2022.10.07
  • 심사 : 2023.11.07
  • 발행 : 2024.02.25

초록

Introduction: In this study, TLD 600 and TLD 700 pairs were used to measure the neutron dose of Elekta Precise medical linac. To this end, the optimum moderate thickness for the conversion of fast to thermal neutrons were evaluated. Materials and methods: 241Am-Be and 252Cf sources were simulated to calculate the optimum thicknesses of the moderator for the conversion of maximum fast neutrons (FN) into thermal neutrons (TN). Pair TLDs were used to measure F&TN doses for three different field sizes at four depths of the medical linac. Results: The maximum thickness of the moderator was optimized at 6 cm. The measurement results demonstrated that the TN dose increased with the expansion of field size and depth. The FN dose, which was converted TN, exhibits behaviors comparable to the TN due to its nature. Conclusion: This study presents the optimum thickness for the moderator to convert FN into TN and measure F&TN using TLDs.

키워드

과제정보

The authors would like to thank the Student Research Committee of Mashhad University of Medical Sciences for the financial support of this research. We are also thankful to the Medical Physics Research Center of Mashhad University of Medical Sciences and Radiation Therapy Department of Emam Reza Hospital for providing technical facilities. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. RS-2023-00221186).

참고문헌

  1. U. Schneider, Mechanistic model of radiation-induced cancer after fractionated radiotherapy using the linear-quadratic formula, Med. Phys. 36 (4) (2009) 1138-1143.
  2. U. Schneider, Modeling the risk of secondary malignancies after radiotherapy, Genes 2 (4) (2011) 1033-1049.
  3. A. Esposito, R. Bedogni, L. Lembo, M. Morelli, Determination of the neutron spectra around an 18 MV medical linac with a passive Bonner sphere spectrometer based on gold foils and TLD pairs, Radiat. Meas. 43 (2-6) (2008) 1038-1043.
  4. M.T. Bahreyni Toossi, M. Behmadi, M. Ghorbani, H. Gholamhosseinian, A Monte Carlo study on electron and neutron contamination caused by the presence of hip prosthesis in photon mode of a 15 MV Siemens primus linac, J. Appl. Clin. Med. Phys. 14 (5) (2013) 52-67.
  5. M. Azizi, A.A. Mowlavi, M. Ghorbani, C. Knuap, M. Behmadi, A Monte Carlo study on dose perturbation due to dental restorations in a 15 MV photon beam, J. Cancer Res. Therapeut. 15 (3) (2019) 491-497.
  6. F.Y. Hsu, Y.L. Chang, M.T. Liu, S.S. Huang, C.C. Yu, Dose estimation of the neutrons induced by the high energy medical linear accelerator using dual-TLD chips, Radiat. Meas. 45 (3-6) (2010) 739-741.
  7. B. Mukherjee, J. Lambert, R. Hentschel, E. Negodin, J. Farr, An ultra sensitive fast neutron area monitor using gadolinium covered aluminium oxide dosimeter (TLD-500) chips, Radiat. Meas. 46 (12) (2011) 1698-1700.
  8. B. Mukherjee, D. Makowski, S. Simrock, Dosimetry of high-energy electron linac produced photoneutrons and the bremsstrahlung gamma-rays using TLD-500 and TLD-700 dosimeter pairs, Nucl. Instrum. Methods Phys. Res. B 545 (3) (2005) 830-841.
  9. H.M. Garnica-Garza, Characteristics of the photoneutron contamination present in a high-energy radiotherapy treatment room, Phys. Med. Biol. 50 (3) (2005) 531-539.
  10. S.A. Martinez-Ovalle, R. Barquero, J.M. Gomez-Ros, A.M. Lallena, Neutron dose equivalent and neutron spectra in tissue for clinical linacs operating at 15, 18 and 20 MV, Radiat. Protect. Dosim. 147 (4) (2011) 498-511.
  11. S.C. Thekkedath, R.G. Raman, M.M. Musthafa, A.K. Bakshi, R. Pal, S. Dawn, et al., Study on the measurement of photo-neutron for15 MV photon beam from medical linear accelerator under different irradiation geometries using passive detectors, J. Cancer Res. Therapeut. 12 (2) (2016) 1060-1064.
  12. R.M. Howell, S.F. Kry, E. Burgett, N.E. Hertel, D.S. Followill, Secondary neutron spectra from modern Varian, Siemens, and Elekta linacs with multileaf collimators, Med. Phys. 36 (9) (2009) 4027-4038.
  13. S.M. Hashemi, B. Hashemi-Malayeri, G. Raisali, P. Shokrani, A.A. Sharafi, F. Torkzadeh, Measurement of photoneutron dose produced by wedge filters of a high energy linac using polycarbonate films, J. Radiat. Res. 49 (3) (2008) 279-283.
  14. A. Naseri, A. Mesbahi, A review on photoneutrons characteristics in radiation therapy with high-energy photon beams, Rep. Practical Oncol. Radiother. 15 (5) (2010) 138-144.
  15. A. Konefal, A. Orlef, M. Laciak, A. Ciba, M. Szewczuk, Thermal and resonance neutrons generated by various electron and X-ray therapeutic beams from medical linacs installed in polish oncological centers, Rep. Practical Oncol. Radiother. 17 (6) (2012) 339-346.
  16. J.P. Lin, W.C. Liu, C.C. Lin, Investigation of photoneutron dose equivalent from high-energy photons in radiotherapy, Appl. Radiat. Isot. 65 (5) (2007) 599-604.
  17. G. Tosi, A. Torresin, S. Agosteo, A. Foglio Para, V. Sangiust, L. Zeni, et al., Neutron measurements around medical electron accelerators by active and passive detection techniques, Med. Phys. 18 (1) (1991) 54-60.
  18. H.R. Vega-Carrillo, S.A. Martinez-Ovalle, A.M. Lallena, G.A. Mercado, J.L. Benites-Rengifo, Neutron and photon spectra in linacs, Appl. Radiat. Isot. 71 (Suppl) (2012) 75-80.
  19. J. Bohm, W. Alberts, K. Swinth, C. Soares, J. McDonald, I. Thompson, et al., ISO recommended reference radiations for the calibration and proficiency testing of dosemeters and dose rate meters used in radiation protection, Radiat. Protect. Dosim. 86 (2) (1999) 87-105.
  20. J. Chartier, J. Kurkdjian, D. Paul, C. Iti'e, G. Audoin, G. Pelcot, et al., Progress on calibration procedures with realistic neutron spectra, Radiat. Protect. Dosim. 61 (1-3) (1995) 57-61.
  21. J. McDonald, W. Alberts, D. Bartlett, J. Chartier, C. Eisenhauer, H. Schraube, et al., Current status of an ISO working document on reference radiations: characteristics and methods of production of simulated practical neutron fields, Radiat. Protect. Dosim. 70 (1-4) (1997) 323-325.
  22. company TPK. TLD dosimetric properties 2001-2005.. Accessed on: http://www.tld.com.pl/tld/products.html.
  23. A. Triolo, M. Marrale, M. Brai, Neutron-gamma mixed field measurements by means of MCP-TLD600 dosimeter pair, Nucl. Instrum. Methods Phys. Res. B 264 (1) (2007) 183-188.
  24. A. Ghasemi, T.A. Pourfallah, M.R. Akbari, H. Babapour, M. Shahidi, Photoneutron dose equivalent rate in 15 MV X-ray beam from a Siemens Primus linac, J. Med. Phys. 40 (2) (2015) 90-94.
  25. S. Mohammadi, M. Behmadi, A. Mohammadi, M.T. Bahreyni-Toossi, Thermal and fast neutron dose equivalent distribution measurement of 15-MV linear accelerator using a CR-39 nuclear track detectors, Radiat. Protect. Dosim. 188 (4) (2020) 503-507.