DOI QR코드

DOI QR Code

CONTINUITY OF THE MAXIMAL COMMUTATORS IN SOBOLEV SPACES

  • Xixi Jiang (College of Mathematics and Systems Science Shandong University of Science and Technology) ;
  • Feng Liu (College of Mathematics and Systems Science Shandong University of Science and Technology)
  • Received : 2023.06.12
  • Accepted : 2023.11.14
  • Published : 2024.05.01

Abstract

We prove the Sobolev continuity of maximal commutator and its fractional variant with Lipschitz symbols, both in the global and local cases. The main result in global case answers a question originally posed by Liu and Wang in [29].

Keywords

Acknowledgement

The second author was supported partly by the Natural Science Foundation of Shandong Province (Grant no. ZR2023MA022) and the National Natural Science Foundation of China (Grant no. 12326371).

References

  1. M. Agcayazi, A. Gogatishvili, K. Koca, and R. Mustafayev, A note on maximal commutators and commutators of maximal functions, J. Math. Soc. Japan 67 (2015), no. 2, 581-593. https://doi.org/10.2969/jmsj/06720581 
  2. J. M. Aldaz and J. Perez Lazaro, Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities, Trans. Amer. Math. Soc. 359 (2007), no. 5, 2443-2461. https://doi.org/10.1090/S0002-9947-06-04347-9 
  3. A. M. Alphonse, An end point estimate for maximal commutators, J. Fourier Anal. Appl. 6 (2000), no. 4, 449-456. https://doi.org/10.1007/BF02510149 
  4. D. Beltran, C. Gonzalez-Riquelme, J. Madrid, and J. Weigt, Continuity of the gradient of the fractional maximal operator on W1,1(ℝd), to appear in Math. Res. Lett, arXiv:2102.10206v1.  2102.
  5. D. Beltran and J. Madrid, Regularity of the centered fractional maximal function on radial functions, J. Funct. Anal. 279 (2020), no. 8, 108686, 28 pp. https://doi.org/10.1016/j.jfa.2020.108686 
  6. D. Beltran and J. Madrid, Endpoint Sobolev continuity of the fractional maximal function in higher dimensions, Int. Math. Res. Not. IMRN 2021 (2021), no. 22, 17316-17342. https://doi.org/10.1093/imrn/rnz281 
  7. E. Carneiro, C. Gonzalez-Riquelme, and J. Madrid, Sunrise strategy for the continuity of maximal operators, J. Anal. Math. 148 (2022), no. 1, 37-84. https://doi.org/10.1007/s11854-022-0222-7 
  8. E. Carneiro and J. Madrid, Derivative bounds for fractional maximal functions, Trans. Amer. Math. Soc. 369 (2017), no. 6, 4063-4092. https://doi.org/10.1090/tran/6844 
  9. E. Carneiro, J. Madrid, and L. B. Pierce, Endpoint Sobolev and BV continuity for maximal operators, J. Funct. Anal. 273 (2017), no. 10, 3262-3294. https://doi.org/10.1016/j.jfa.2017.08.012 
  10. E. Carneiro and D. Moreira, On the regularity of maximal operators, Proc. Amer. Math. Soc. 136 (2008), no. 12, 4395-4404. https://doi.org/10.1090/S0002-9939-08-09515-4 
  11. P. Chen, X. T. Duong, J. Li, and Q. Wu, Compactness of Riesz transform commutator on stratified Lie groups, J. Funct. Anal. 277 (2019), no. 6, 1639-1676. https://doi.org/10.1016/j.jfa.2019.05.008 
  12. F. Deringoz, V. S. Guliyev, and S. G. Hasanov, Commutators of fractional maximal operator on generalized Orlicz-Morrey spaces, Positivity 22 (2018), no. 1, 141-158. https://doi.org/10.1007/s11117-017-0504-y 
  13. F. Deringoz, V. S. Guliyev, and S. G. Samko, Vanishing generalized Orlicz-Morrey spaces and fractional maximal operator, Publ. Math. Debrecen 90 (2017), no. 1-2, 125-147. 
  14. X. Duong, M. Lacey, J. Li, B. Wick, and Q. Wu, Commutators of Cauchy-Szego type integrals for domains in ℂn with minimal smoothness, Indiana Univ. Math. J. 70 (2021), no. 4, 1505-1541. https://doi.org/10.1512/iumj.2021.70.8573 
  15. Z. W. Fu, S. L. Gong, S. Z. Lu, and W. Yuan, Weighted multilinear Hardy operators and commutators, Forum Math. 27 (2015), no. 5, 2825-2851. https://doi.org/10.1515/forum-2013-0064 
  16. J. Garcia-Cuerva, E. Harboure, C. Segovia, and J. Torrea, Weighted norm inequalities for commutators of strongly singular integrals, Indiana Univ. Math. J. 40 (1991), no. 4, 1397-1420. https://doi.org/10.1512/iumj.1991.40.40063 
  17. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, second edition, Springer, Berlin, 1983. https://doi.org/10.1007/978-3-642-61798-0 
  18. C. Gonzalez-Riquelme, On the continuity of maximal operators of convolution type at the derivative level, Israel J. Math. 253 (2023), no. 2, 745-759. https://doi.org/10.1007/s11856-022-2375-6 
  19. C. Gonzalez-Riquelme and D. Kosz, BV continuity for the uncentered Hardy-Littlewood maximal operator, J. Funct. Anal. 281 (2021), no. 2, Paper No. 109037, 20 pp. https://doi.org/10.1016/j.jfa.2021.109037 
  20. V. S. Guliyev and F. Deringoz, Some characterizations of Lipschitz spaces via commutators on generalized Orlicz-Morrey spaces, Mediterr. J. Math. 15 (2018), no. 4, Paper No. 180, 19 pp. https://doi.org/10.1007/s00009-018-1226-5 
  21. P. Hajlasz and J. Maly, On approximate differentiability of the maximal function, Proc. Amer. Math. Soc. 138 (2010), no. 1, 165-174. https://doi.org/10.1090/S0002-9939-09-09971-7 
  22. P. Hajlasz and J. Onninen, On boundedness of maximal functions in Sobolev spaces, Ann. Acad. Sci. Fenn. Math. 29 (2004), no. 1, 167-176. 
  23. J. Hart, F. Liu, and Q. Xue, Regularity and continuity of local multilinear maximal type operators, J. Geom. Anal. 31 (2021), no. 4, 3405-3454. https://doi.org/10.1007/s12220-020-00400-7 
  24. T. Heikkinen, J. Kinnunen, J. Korvenpaa, and H. Tuominen, Regularity of the local fractional maximal function, Ark. Mat. 53 (2015), no. 1, 127-154. https://doi.org/10.1007/s11512-014-0199-2 
  25. J. Kinnunen, The Hardy-Littlewood maximal function of a Sobolev function, Israel J. Math. 100 (1997), 117-124. https://doi.org/10.1007/BF02773636 
  26. J. Kinnunen and P. Lindqvist, The derivative of the maximal function, J. Reine Angew. Math. 503 (1998), 161-167. 
  27. J. Kinnunen and E. Saksman, Regularity of the fractional maximal function, Bull. London Math. Soc. 35 (2003), no. 4, 529-535. https://doi.org/10.1112/S0024609303002017 
  28. E. H. Lieb and M. P. Loss, Analysis, second edition, Graduate Studies in Mathematics, 14, Amer. Math. Soc., Providence, RI, 2001. https://doi.org/10.1090/gsm/014 
  29. F. Liu and G. Wang, Regularity of commutators of maximal operators with Lipschitz symbols, Taiwanese J. Math. 25 (2021), no. 5, 1007-1039. https://doi.org/10.11650/tjm/210301 
  30. F. Liu and H. Wu, On the regularity of the multisublinear maximal functions, Canad. Math. Bull. 58 (2015), no. 4, 808-817. https://doi.org/10.4153/CMB-2014-070-7 
  31. F. Liu and S. Xi, Sobolev regularity for commutators of the fractional maximal functions, Banach J. Math. Anal. 15 (2021), no. 1, Paper No. 5, 36 pp. https://doi.org/10.1007/s43037-020-00095-6 
  32. F. Liu, Q. Y. Xue, and K. Yabuta, Sobolev boundedness and continuity for commutators of the local Hardy-Littlewood maximal function, Ann. Fenn. Math. 47 (2022), no. 1, 203-235. https://doi.org/10.54330/afm.113296 
  33. F. Liu, Q. Y. Xue, and P. Zhang, Regularity and continuity of commutators of the Hardy-Littlewood maximal function, Math. Nachr. 293 (2020), no. 3, 491-509. https://doi.org/10.1002/mana.201900013 
  34. H. Luiro, Continuity of the maximal operator in Sobolev spaces, Proc. Amer. Math. Soc. 135 (2007), no. 1, 243-251. https://doi.org/10.1090/S0002-9939-06-08455-3 
  35. H. Luiro, On the regularity of the Hardy-Littlewood maximal operator on subdomains of ℝn, Proc. Edinb. Math. Soc. (2) 53 (2010), no. 1, 211-237. https://doi.org/10.1017/S0013091507000867 
  36. H. Luiro, The variation of the maximal function of a radial function, Ark. Mat. 56 (2018), no. 1, 147-161. https://doi.org/10.4310/ARKIV.2018.v56.n1.a9 
  37. H. Luiro and J. Madrid, The variation of the fractional maximal function of a radial function, Int. Math. Res. Not. IMRN 2019 (2019), no. 17, 5284-5298. https://doi.org/10.1093/imrn/rnx277 
  38. J. Madrid, Endpoint Sobolev and BV continuity for maximal operators, II, Rev. Mat. Iberoam. 35 (2019), no. 7, 2151-2168. https://doi.org/10.4171/rmi/1115 
  39. C. Segovia and J. L. Torrea, Weighted inequalities for commutators of fractional and singular integrals, Publ. Mat. 35 (1991), no. 1, 209-235. https://doi.org/10.5565/PUBLMAT_35191_09 
  40. C. Segovia and J. L. Torrea, Higher order commutators for vector-valued Calderon-Zygmund operators, Trans. Amer. Math. Soc. 336 (1993), no. 2, 537-556. https://doi.org/10.2307/2154362 
  41. S. Shi, Z. Fu, and S. Z. Lu, On the compactness of commutators of Hardy operators, Pacific J. Math. 307 (2020), no. 1, 239-256. https://doi.org/10.2140/pjm.2020.307.239 
  42. H. Tanaka, A remark on the derivative of the one-dimensional Hardy-Littlewood maximal function, Bull. Austral. Math. Soc. 65 (2002), no. 2, 253-258. https://doi.org/10.1017/S0004972700020293 
  43. S. Yang, D. Chang, D. Yang, and Z. Fu, Gradient estimates via rearrangements for solutions of some Schrodinger equations, Anal. Appl. (Singap.) 16 (2018), no. 3, 339-361. https://doi.org/10.1142/S0219530517500142 
  44. M. H. Yang, Z. Fu, and S. Liu, Analyticity and existence of the Keller-Segel-Navier-Stokes equations in critical Besov spaces, Adv. Nonlinear Stud. 18 (2018), no. 3, 517-535. https://doi.org/10.1515/ans-2017-6046 
  45. M. H. Yang, Z. Fu, and J. Sun, Existence and Gevrey regularity for a two-species chemotaxis system in homogeneous Besov spaces, Sci. China Math. 60 (2017), no. 10, 1837-1856. https://doi.org/10.1007/s11425-016-0490-y 
  46. P. Zhang, Characterization of Lipschitz spaces via commutators of the Hardy-Littlewood maximal function, C. R. Math. Acad. Sci. Paris 355 (2017), no. 3, 336-344. https://doi.org/10.1016/j.crma.2017.01.022 
  47. P. Zhang, Characterization of boundedness of some commutators of maximal functions in terms of Lipschitz spaces, Anal. Math. Phys. 9 (2019), no. 3, 1411-1427. https://doi.org/10.1007/s13324-018-0245-5