DOI QR코드

DOI QR Code

REDUCTION OF ABELIAN VARIETIES AND CURVES

  • Received : 2023.07.15
  • Accepted : 2023.11.11
  • Published : 2024.05.01

Abstract

Consider a Noetherian domain R0 with quotient field K0. Let K be a finitely generated regular transcendental field extension of K0. We construct a Noetherian domain R with Quot(R) = K that contains R0 and embed Spec(R0) into Spec(R). Then, we prove that key properties of abelian varieties and smooth geometrically integral projective curves over K are preserved under reduction modulo p for "almost all" p ∈ Spec(R0).

Keywords

References

  1. M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, MA, 1969.
  2. A. Borel, Linear Algebraic Groups, second edition, Graduate Texts in Mathematics, 126, Springer, New York, 1991. https://doi.org/10.1007/978-1-4612-0941-6
  3. S. Bosch, W. Lutkebohmert, and M. Raynaud, N'eron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 21, Springer, Berlin, 1990. https://doi.org/10.1007/978-3-642-51438-8
  4. B. Conrad, Chow's K/k-image and K/k-trace, and the Lang-N'eron theorem, Enseign. Math. (2) 52 (2006), no. 1-2, 37-108.
  5. P. Deligne and D. B. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Etudes Sci. Publ. Math. No. 36 (1969), 75-109.
  6. M. F. Deuring, Lectures on the theory of algebraic functions of one variable, Lecture Notes in Mathematics, Vol. 314, Springer, Berlin, 1973.
  7. D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, 150, Springer, New York, 1995. https://doi.org/10.1007/978-1-4612-5350-1
  8. J. S. Ellenberg, C. Elsholtz, C. Hall, and E. Kowalski, Non-simple abelian varieties in a family: geometric and analytic approaches, J. Lond. Math. Soc. (2) 80 (2009), no. 1, 135-154. https://doi.org/10.1112/jlms/jdp021
  9. M. D. Fried and M. Jarden, Field Arithmetic, third edition, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 11, Springer, Berlin, 2008.
  10. W. Fulton, Algebraic Curves, Addison-Wesley, Redwood City, CA, 1989.
  11. W.-D. Geyer and M. Jarden, On stable fields in positive characteristic, Geom. Dedicata 29 (1989), no. 3, 335-375. https://doi.org/10.1007/BF00572450
  12. U. Gortz and T. Wedhorn, Algebraic Geometry I, Advanced Lectures in Mathematics, Vieweg + Teubner, Wiesbaden, 2010. https://doi.org/10.1007/978-3-8348-9722-0
  13. B. Green and P. Roquette, An introduction to Deuring's theory of constant reductions, in Abelian varieties and number theory, 71-88, Contemp. Math., 767, Amer. Math. Soc., RI, 2021. https://doi.org/10.1090/conm/767/15398
  14. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, No. 52, Springer, New York, 1977.
  15. E. Hrushovski, Proof of Manin's theorem by reduction to positive characteristic, in Model theory and algebraic geometry, 197-205, Lecture Notes in Math., 1696, Springer, Berlin, 1998. https://doi.org/10.1007/978-3-540-68521-0_11
  16. S. Lang, Introduction to Algebraic Geometry, Interscience Publishers, Inc., New York, 1958.
  17. S. Lang, Abelian varieties, Interscience Tracts in Pure and Applied Mathematics, No. 7, Interscience Publishers, Inc., New York, 1959.
  18. S. Lang, Diophantine geometry, Interscience Tracts in Pure and Applied Mathematics, No. 11, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York, 1962.
  19. S. Lang, Algebra, Third edition, Addison-Wesley, Reading, 1993.
  20. Q. Liu, Algebraic Geometry and Arithmetic Curves, Oxford Graduate Texts in Mathematics, 6, Oxford Univ. Press, Oxford, 2002.
  21. H. Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge Univ. Press, Cambridge, 1986.
  22. J. S. Milne, Abelian varieties, in Arithmetic geometry, edited by G. Cornell and J. H. Silverman, Springer-Verlag, New York, 1986.
  23. J. S. Milne, Algebraic Geometry Version 6.03, 2023. https://www.jmilne.org/math/CourseNotes/AG.pdf
  24. D. B. Mumford, Abelian Varieties, Oxford University Press, London, 1974.
  25. D. B. Mumford, The red book of varieties and schemes, Lecture Notes in Mathematics, 1358, Springer, Berlin, 1988. https://doi.org/10.1007/978-3-662-21581-4
  26. D. B. Mumford, J. Fogarty, and F. C. Kirwan, Geometric Invariant Theory, third edition, Springer, Berlin, 1994.
  27. B. Poonen, Rational points on varieties, Graduate Studies in Mathematics, 186, Amer. Math. Soc., Providence, RI, 2017. https://doi.org/10.1090/gsm/186
  28. M. Rosenlicht, Equivalence relations on algebraic curves, Ann. of Math. (2) 56 (1952), 169-191. https://doi.org/10.2307/1969773
  29. J.-P. Serre and J. Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492-517. https://doi.org/10.2307/1970722
  30. G. Shimura, Abelian varieties with complex multiplication and modular functions, Princeton Mathematical Series, 46, Princeton Univ. Press, Princeton, NJ, 1998. https://doi.org/10.1515/9781400883943
  31. A. Silverberg, Fields of definition for homomorphisms of abelian varieties, J. Pure Appl. Algebra 77 (1992), no. 3, 253-262. https://doi.org/10.1016/0022-4049(92)90141-2
  32. D. E. Speyer, Why are torsion points dense in an abelian variety, 2014. https://mathoverflow.net/questions/349/why-are-torsion-points-dense-in-an-abelian-variety
  33. A. Weil, Foundations of Algebraic Geometry, Amer. Math. Soc., Providence, RI, 1962.
  34. O. Zariski and P. Samuel, Commutative Algebra. Vol. I, Graduate Texts in Mathematics, Vol. 29, Springer, New York, 1975.