DOI QR코드

DOI QR Code

A Study on the Reflectivity according to the Material of Biopsy Gun Needle Used in Ultrasound Biopsy

초음파 조직검사에 사용되는 Biopsy Gun Needle의 재질에 따른 반사율 연구

  • 김훈 (한서대학교 보건의료학과) ;
  • 임청환 (한서대학교 보건의료학과)
  • Received : 2024.02.29
  • Accepted : 2024.03.17
  • Published : 2024.04.30

Abstract

The examination needle used in ultrasound biopsy is a medical device used to determine whether there is an abnormality in the tissue. Typically, stainless steel is the standard material used for such needles; however, this study wanted to identify a material that could better enhance sound compared to traditional stainless steel. In this study, six types of needle materials available with the biopsy gun were inserted into pork and ultrasound images according to the curved probe and linear probe were evaluated using ultrasound equipment. The findings revealed significant improvements in ultrasound acoustic enhancement with alternative materials compared to stainless steel (p<0.05). The results regarding the depth of each ultrasound image using the curved probe showed that tungsten and brass had high sound enhancement(p<0.05), while with the linear probe, sound enhancement was high in brass, pla, aluminum, and copper(p<0.05). Due to these results, the previously used stainless needle showed lower ultrasound acoustic enhancement than the five types of materials being compared. Consequently, the outcomes of this study provide valuable insights for the development of new needle technologies aimed at minimizing patient risks and improving diagnostic accuracy.

Keywords

References

  1. Shim HS. Ultrasound imaging. Seoul: Hanmi Medical Press; 2016, pp. 139-149.
  2. Choi BI. Upper abdominal ultrasound diagnostics. Seoul: ilchokak Press; 2015, pp. 140-152.
  3. SHim HS. Atlas ultrasound imaging. Seoul: Hanmi Medical Press; 2021, pp. 58-101.
  4. Zagzebski JA. Essentials of ultrasound physics. United Kingdom: Mosby Press; 1996, pp. 10-102.
  5. Walker TG. Diagnositc imaging: Interventional procedures. Salt Lake City: Amirsys Press; 2013. pp. 10-50.
  6. Kim CS, Kang SS, Kim JH. Evaluation of quantitative image quality using frequency and parameters in the ultrasound image. Journal of the Korean Society of Radiology. 2016;10(4):247-53. DOI: https://doi.org/10.7742/jksr.2016.10.4.247
  7. Lee JS, Kim CS. Application of computer aided diagnosis a using texture feature analysis algorithm in breast us image. Journal of The Korea Academia Industrial Cooperation Society. 2015;16(1):507-15. DOI: https://doi.org/10.5762/KAIS.2015.16.1.507
  8. Han DH, Seo YL, Choi CS, et al. A Steerable guiding device: The new method in ultrasound guidance. Investigative Radiology. 2022;37(11):626-31. DOI: https://doi.org/10.1097/01.RLI.0000031074.37936.D9
  9. Bradley MJ. An in vitro study to understand successful free hand ultrasound guided intervention. Pubmed. 2021;56(6):495-8. DOI: http://doi.org/10.1053/drad.2000.0579
  10. Park YH. The analysis of artifact by needle in ultrasound guided biopsy [master's thesis]. Seoul: Korea University; 2005.
  11. Kim MS, Lee WH. Usefulness of US guide core needle biopsy for pathologic diagnosis of breast lesion with microcalcification: Comparison of stereotactic vacuum assisted biopsys. KSMC. 2011;2(1):77-82.
  12. Nichols K, Wright LB, Spencer T, Culp WC. Change in Ultrasonographic echogenicity and visibility of needles with changes in angles of insonation. Journal of Vascular and Interventional Radiology. 2003;14(12):1553-7. DOI: https://doi.org/10.1097/01.RVI.0000099527.299
  13. Bisceglia M, Matalon TA, Siver B. The pump manoeuvre: An atraumatic adjust to enhance ultrasound needle tip localization. Radiology. 1990:176(3): 867-8. DOI: https://doi.org/10.1148/radiology/radiology.176.3.2202015
  14. Choi MS, Song JN. Usefulness of X-ray guided biopsy and ultrasound guided biopsy in breast microcalcification biopsy. The Korean Society of Radiology. 2016;10(3):200-6. DOI: https//doi.org/10.7742/jksr.2016.10.3.201
  15. Gunpta S, New techniques in image guide percutaneous biopsy. Cardiovac Intervent Radial. 2004;(2): 91-104. DOI: https://doi.org/10.1007/s00270-003-0056-3
  16. Lee JS, Kim CS. Image analysis of diffuse liver disease using computer adided diagnosis in the liver US image. Journal of the Korean Society of Radiology. 2015;9(4):227-34. DOI: https://doi.org/10.7742/jksr.2015.9.4.227
  17. Yoon JH. Quantitavive evaluation of vascularity using 2-d power doppler ultrasonography may not identify malignancy of the thyroid. Ultrasound in Medicine. 2015;41(11):2873-83. DOI: https://doi.org/10.1016/j.ultrasmedbio.2015.07.009
  18. Nam SJ, Yoo J, Lee HS, Kim EK, Moon HJ, Yoon JH, et al. Quantitative evaluation for differentiating malignant and benign thyroid nodules using histogram analysis of grayscale sonograms. Journal of Ultrasound in Medicine. 2016;35(4):775-82. DOI: https://doi.org/10.7863/ultra.15.05055
  19. Lee SH. A study on the quantitative evaluation method of image improvement using brightness change and structural similarity between medical images [master's thesis]. Seoul: Korea University; 2022.
  20. Lee BS, Lim HS. Evaluation of depth penetration by changing image parameters UsING phantom on ultrasound. Krta. 2004;30(1):77-89. DOI: https://koreascience.kr/article/JAKO200473605816983
  21. Jang HW. From the PACS SNR comparison of raw image and compression image [master's thesis]. Seoul: Korea University; 2004.
  22. Kim JH, Shin EH. Spatial dose distribution for c-armexamination within operation room using monte carlo method. Journal of Radiological Science and Technology. 2021;44(3):205-10. DOI: https://doi.org/10.17946/JRST.2021.44.3.205
  23. Jeong KH, Jung DK, Seo JM. A study on the measurement linearity of hotoluminescent dosimeter. Journal of the Korean Society of Radiology. 2021; 15(6):841-7. DOI: https://doi.org/10.7742/jksr.2021.15.6.841