• Title/Summary/Keyword: 초음파 음향 증강

Search Result 2, Processing Time 0.021 seconds

A Study on the Reflectivity according to the Material of Biopsy Gun Needle Used in Ultrasound Biopsy (초음파 조직검사에 사용되는 Biopsy Gun Needle의 재질에 따른 반사율 연구)

  • Hoon Kim;Cheong-Hwan Lim
    • Journal of radiological science and technology
    • /
    • v.47 no.2
    • /
    • pp.97-105
    • /
    • 2024
  • The examination needle used in ultrasound biopsy is a medical device used to determine whether there is an abnormality in the tissue. Typically, stainless steel is the standard material used for such needles; however, this study wanted to identify a material that could better enhance sound compared to traditional stainless steel. In this study, six types of needle materials available with the biopsy gun were inserted into pork and ultrasound images according to the curved probe and linear probe were evaluated using ultrasound equipment. The findings revealed significant improvements in ultrasound acoustic enhancement with alternative materials compared to stainless steel (p<0.05). The results regarding the depth of each ultrasound image using the curved probe showed that tungsten and brass had high sound enhancement(p<0.05), while with the linear probe, sound enhancement was high in brass, pla, aluminum, and copper(p<0.05). Due to these results, the previously used stainless needle showed lower ultrasound acoustic enhancement than the five types of materials being compared. Consequently, the outcomes of this study provide valuable insights for the development of new needle technologies aimed at minimizing patient risks and improving diagnostic accuracy.

A comparative study on keypoint detection for developmental dysplasia of hip diagnosis using deep learning models in X-ray and ultrasound images (X-ray 및 초음파 영상을 활용한 고관절 이형성증 진단을 위한 특징점 검출 딥러닝 모델 비교 연구)

  • Sung-Hyun Kim;Kyungsu Lee;Si-Wook Lee;Jin Ho Chang;Jae Youn Hwang;Jihun Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.460-468
    • /
    • 2023
  • Developmental Dysplasia of the Hip (DDH) is a pathological condition commonly occurring during the growth phase of infants. It acts as one of the factors that can disrupt an infant's growth and trigger potential complications. Therefore, it is critically important to detect and treat this condition early. The traditional diagnostic methods for DDH involve palpation techniques and diagnosis methods based on the detection of keypoints in the hip joint using X-ray or ultrasound imaging. However, there exist limitations in objectivity and productivity during keypoint detection in the hip joint. This study proposes a deep learning model-based keypoint detection method using X-ray and ultrasound imaging and analyzes the performance of keypoint detection using various deep learning models. Additionally, the study introduces and evaluates various data augmentation techniques to compensate the lack of medical data. This research demonstrated the highest keypoint detection performance when applying the residual network 152 (ResNet152) model with simple & complex augmentation techniques, with average Object Keypoint Similarity (OKS) of approximately 95.33 % and 81.21 % in X-ray and ultrasound images, respectively. These results demonstrate that the application of deep learning models to ultrasound and X-ray images to detect the keypoints in the hip joint could enhance the objectivity and productivity in DDH diagnosis.