An empirical study on data governance: Focusing on structural relationships and effects of components

데이터 거버넌스 실증연구: 구성요소 간 구조적 관계와 영향을 중심으로

  • Yoon, Kun (Department of Public Administration and Data Science, Hanshin University)
  • Received : 2023.03.02
  • Accepted : 2023.05.31
  • Published : 2023.09.30


This study aims to investigate empirically the structural relationships among the components of data governance and their impacts on data integration and data-based administration. Through literature review, various definitions, typologies, and case studies of data governance were examined, with the definition of data governance from a public policy perspective developed and applied. The study then analyzed the data from a survey conducted by the Korea Institute of Public Administration on the use of public data policies and confirmed that organizational factors play a mediating role between institutional and technical factors, and that institutional and technical factors have statistically significant positive relationships with data fusion and data-driven administration. Based on these results, interest and investment in the improvement and development of the legal system in data governance from the institutional, technical, and organizational perspective, clarification of means and purposes of data technology, interest in data organizations and human resources, and practical operation can be achieved. Policy implications such as the development of an effective mechanism were presented.

디지털전환과 AI·데이터시대가 심화되면서 데이터의 원활한 흐름과 활용을 위한 데이터 정책, 그리고 그 의사결정 구조로서의 데이터 거버넌스에 대한 관심이 증대되고 있다. 기존의 데이터 거버넌스 연구들을 살펴보면, 데이터 거버넌스 자체의 측정이나 사례 분석은 많이 이루어지고 있으나 실증연구가 부족한 것으로 보인다. 이 논문에서는 데이터 거버넌스의 구성요소 간 구조적 관계와 그것이 목표로 하는 데이터 융합이나 데이터기반행정 등에 미치는 영향을 실증하고자 하였다. 첫째, 데이터 거버넌스에 대한 다양한 정의와 구성요소 및 유형화의 방식, 이를 적용한 선행연구들을 살펴보고, 공공 부문에 특화된 데이터 정책 관점의 정의를 개발하여 적용하였다. 둘째, 분석틀과 가설을 설정하고, 검증을 위해 한국행정연구원의 '공공데이터 정책 활용 실태조사' 자료를 분석하였다. 분석 결과, 데이터 거버넌스 구성요소 중 조직 요소가 제도 요소와 기술 요소 사이에서 매개적 효과를 나타내었고, 제도 요소와 기술 요소가 데이터 융합이나 데이터기반행정에 통계적으로 유의한 긍정적 영향을 미치는 것으로 나타났다. 셋째, 데이터 거버넌스에서 법제도의 개선과 개발에 대한 관심과 투자, 데이터 기술의 수단과 목적에 대한 명확화, 데이터 조직과 인력에 대한 관심과 실제적으로 작동할 수 있는 메커니즘의 개발 등, 몇 가지 중요한 정책적 시사점을 제시하였다.



This is a study conducted by Hanshin University's intramural research fund support in 2023, and data produced by the Korea Institute of Public Administration were used, and permission was obtained in accordance with its research data management rules.


  1. Baron, R. M. & Kenny, D. A. (1986). "The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations." Journal of personality and social psychology, 51(6), 1173-1182.
  2. Cho, W. (2017). "Big Data Governance and Trend Trends." OSIA Standards and Technology Review, 30(2), 26-29. 
  3. Choi, Y., Cho, W. & Lee, K. (2018). "Big Data Governance Model for Smart Water Management." The Korea Journal of BigData, 3(2), 1-10. 
  4. Chung, M. (2021). "A review on the EU Data Governance Act and the establishment of domestic data legislation." Artificial Intelligence Big Data Cyber Security Law Review, 3. 75-102. 
  5. Eom, J. (2020). "A Public Legal Review of Big Data Governance in COVID-19." National Public law Review, 16(2), 1-23.
  6. Eun, J. & Hwang, S. (2020). "An Exploratory Study on Policy Decision Making with Artificial Intelligence: Applying Problem Structuring Typology on Success and Failure Cases." Informatization Policy, 27(4), 47-66.
  7. Jang, K. & Kim, W. (2016a). "Component Development and Importance Weight Analysis of Data Governance." Journal of The Korean Operations Research and Management Science Society, 41(3), 45-58. 
  8. Jang, K. & Kim, W. (2016b). "Developing and Refining Components in Data Governance Framework." Journal of Korean Institute of Information Technology, 14(9), 93-107.
  9. Jeong, D., An, J. & Park, S. (2020). "A Study on Construction of Data Governance Framework for Smart City." Journal of Korean Society for Geospatial Information Science, 28(2), 39-47.
  10. Jeong, S. (2022). "The Study on Data Governance Research Trends Based on Text Mining: Based on the publication of Korean academic journals from 2009 to 2021." Journal of Digital Convergence, 20(4), 133-145. 
  11. Kang, J. (2021). "Development of Major Components of Big Data Governance Using RGT and Q methodology." Journal of Future Society, 12(2), 74-93.
  12. Khatri, V. & Brown, C. V. (2010). "Designing Data Governance." Communications of the ACM, 53(1), 148-152.
  13. Kim, B. (2016). "Trend Analysis and National Policy for Artificial Intelligence." Informatization Policy, 23(1), 74-93.
  14. Kim, J. (2022). "Improvement of Legislation for the Proper use of health and medical data." Korea Law Review, 106, 437-481. 
  15. Kim, J. & Yoon, G. (2019). "Concept Design of Data-centric Infrastructure for Smart Services employing Connected Data Lake and Data Pipeline." OSIA Standards & Technology Review, 32(4), 3-8. 
  16. Kim, M., Won, J., Park, S. & Park, G. (2022). "Intelligent Data Governance for the Federated Integration of Air Quality Databases in the Railway Industry." Journal of Korean Society for Quality Management, 50(4), 811-830. 
  17. Kim, S. (2011). "A Case Study of Implementation Data Governance for Enterprise Architecture." The Journal of Information Technology and Architecture, 8(3), 255-265.
  18. Kim, S. (2013). "The Analysis of Data Governance model for Business and IT Alignment." Journal of The Korea Society of Computer and Information, 18(7), 69-78. 
  19. Kim, S. & Kwon, B. (2019). "A Study on the Introduction of Big Data Governance into Cultural Governance." Culture and Convergence, 41(2), 75-106. 
  20. Kim, S. (2022). "Exploring data governance of government finances." Modern Society and Public Administration, 32(1), 205-233. 
  21. Kim, S., Hwang, J. & Song, I. (2022). "Data rights protection and Governance establishment and Efficient management plan." Korean Law Review for Rehabilitation and Bankruptcy, 24, 219-260.
  22. Kim, Y. & Hong, J. (2021). "A Study on Data Governance in Digital Trade." Journal of International Trade and Insurance, 22(5), 153-169. 
  23. Klievink, B., Van Stijn, E., Hesketh, D., Aldewereld, H., Overbeek, S., Heijmann, F. & Tan, Y. (2012). "Enhancing Visibility in International Supply Chains: The Data Pipeline Concept." International Journal of Electronic Government Research (IJEGR), 8(4), 14-33.
  24. Lee, K. (2020). "Global Digital Standards Cooperation and Data Governance: Human Rights and Development in the Digital Age." International Area Studies Review, 24(3), 177-199. 
  25. Lee, Y., Park, W., Shin, D. & Won, Y. (2019). "A Study on Data Governance Maturity Model and Total Process for the Personal Data Use and Protection." Journal of The Korea Institute of Information Security and Cryptology, 29(5), 1117-1132.
  26. Shin, H., Kang, S. & Lee, J. (2015). "Design of Extended Real-time Data Pipeline System Architecture." Journal of KIISE, 42(8), 1010-1021.
  27. Song, K., Chang, W. & Cho, I. (2018). "A Exploratory Research on the Possibilities and Challenges of Big Data Governance." Korean Journal of Social Theory, 53, 153-186.
  28. Song, S. (2021). "A Study on the Improvement Measures for the Management and Utilization of Korea' s Fiscal Government Data: Focusing on Fiscal Data Governance." Informatization Policy, 28(3), 95-111.
  29. Sung, W. & Hwang, S. (2017). "A Review of Intelligent Society Studies: A look on the future of AI and policy issues." Informatization Policy, 24(2), 3-19.
  30. Yoon, H. (2019). "In the Pursuit of Precision Medicine: A Case Study on the Data Governance of the U.S. All of Us Research Program." The Korean Journal of Bioeconomy, 2(1), 31-91.