DOI QR코드

DOI QR Code

Evaluation of Accuracy of Aeolian Velocity Measurement Using Image Analysis

이미지 분석을 이용한 비사 이동속도 측정 정확도 평가

  • Young-Min Kim (Department of Civil and Environmental Engineering, Myongji University) ;
  • Hosahng Rhew (Department of Geography Education, Jeonbuk National University) ;
  • Hyun-Doug Yoon (Department of Civil and Environmental Engineering, Myongji University)
  • 김영민 (명지대학교 토목환경공학과) ;
  • 류호상 (전북대학교 사범대학 지리교육과) ;
  • 윤현덕 (명지대학교 토목환경공학과)
  • Received : 2023.11.13
  • Accepted : 2023.12.16
  • Published : 2023.12.31

Abstract

Study on Aeolian transport began in 1941 when Bagnold first conducted a study on aeolian transport in desert conditions. Aeolian transport study was mainly conducted on deserts, and the field of coastal engineering began with the application of Bagnold's equation to the coast after 1980. However, many studies have shown that using the Bagnold equation on the coast overestimates the amount of aeolian transport. Currently, aeolian trap using various sensors ranging from simple forms have been developed and are being used in study. However, these aeolian traps have the disadvantage that there is a large difference in performance for each trap. In addition, in the case of existing traps, analysis is performed only on the amount of sand collected, and quantitative analysis of sand transport velocity or concentration is difficult. Therefore, in this study, we use image analysis techniques to evaluate the accuracy of aeolian transport velocity measurement and suggest a method that can be used in the study.

바람에 의한 모래이동(비사이동) 연구는 1941년 Bagnold가 사막 조건에서 바람에 의한 모래 이동량 연구를 최초로 수행하며 시작되었다. 비사이동 연구는 사막을 대상으로 주로 수행되었으며, 해안 공학 분야에서는 1980년 이후 Bagnold 공식을 연안에 접목하며 시작되었다. 하지만 해안에 Bagnold 공식을 사용할 경우 비사 이동량을 과대 산정함이 많은 연구에 의해 제시되었다. 현재 간단한 형태부터 다양한 센서를 활용한 비사 포집기가 개발되었고 연구에 활용되고 있다. 하지만 이러한 비사 포집기는 포집기 별로 포집 성능의 차이가 크다는 단점이 있다. 성능의 차이가 크다는 것은 결과의 신뢰성 및 정확성이 낮다는 것을 의미한다. 또한 기존 포집기의 경우 포집된 모래의 양으로만 분석을 수행하며, 비사 이동속도나 농도에 대한 정량적 분석은 어렵다. 따라서 본 연구에서는 이미지 분석 기법을 이용하여 비사의 이동속도 측정 정확도를 평가하고 연구에 활용할 수 있는 방안을 제시한다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2022R1A2C1009446).

References

  1. Baek, S.J. and Lee, S.J. (1994). Development of the 2-frame particle tracking algorithm using match probability. The Korean Society of Mechanical Engineers, 2, 263-266 (in Korean).
  2. Bagnold, R.A. (1941). The Physics of blown sand and desert dunes. Methuen, New York.
  3. Barchyn, T.E. and Hugenholtz, C.H. (2010). Field comparison of four piezoelectric sensors for detecting aeolian sediment transport. Geomorphology, 120, 368-371. https://doi.org/10.1016/j.geomorph.2010.03.034
  4. Bauer, B.O. and Namikas, S.L. (1998). Design and field test of a continuously weighing, tipping-bucket assembly for aeolian sand traps. Earth Surface Processes and Landforms, 23, 1171-1183. https://doi.org/10.1002/(SICI)1096-9837(199812)23:13<1171::AID-ESP925>3.0.CO;2-H
  5. Davidson-Arnott, R.G.D. and Bauer, B.O. (2009). Aeolian sediment transport on a beach : Thresholds, intermittency, and high frequency variability. Geomorphology, 105, 117-126. https://doi.org/10.1016/j.geomorph.2008.02.018
  6. Farrell, E.J. and Sherman, D.J. (2015). A new relationship between grain size and fall (settling) velocity in air. Progress in Physical Geography : Earth and Environment, 39(3), 361-387. https://doi.org/10.1177/0309133314562442
  7. Fryrear, D.W. (1986). A field dust sampler. Journal of Soil and Water Conservation, 41(2), 117-120.
  8. Goossens, D. and Offer, Z. (2000). Wind tunnel and field calibration of six aeolian dust samplers. Atmospheric Environment, 34, 1043-1057. https://doi.org/10.1016/S1352-2310(99)00376-3
  9. Goossens, D., Offer, Z. and London, G. (2000). Wind tunnel and field calibration of five aeolian sand traps. Geomorphology, 35(3-4), 233-252. https://doi.org/10.1016/S0169-555X(00)00041-6
  10. Hoonhout, B.M. and de Vries, S. (2016). A process-based model for aeolian sediment transport and spatiotemporal varying sediment availability. Journal of Geophysical Research : Earth Surface, 121, 1555-1575. https://doi.org/10.1002/2015JF003692
  11. Nickling, W.G. and McKenna Neuman, C. (1997). Wind tunnel evaluation of a wedge-shaped aeolian sediment trap. Geomorphology, 18(3-4), 333-345. https://doi.org/10.1016/S0169-555X(96)00040-2
  12. O'Brien, P. and Neuman, C.M. (2016). PTV measurement of the spanwise component of aeolian transport in steady state. Aeolian Research, 20, 126-138. https://doi.org/10.1016/j.aeolia.2015.11.005
  13. Ohmi, K. and Li, H.Y. (2000). Particle-tracking velocimetry with new algorithms. Measurement Science and Technology, 11(6), 603-616. https://doi.org/10.1088/0957-0233/11/6/303
  14. Patalano, A. (2023). PTVlab (Particle Tracking Velocimetry-lab). https://www.mathworks.com/matlabcentral/fileexchange/41235-ptvlab-particle-tracking-velocimetry-lab, MATLAB Central File Exchange.
  15. Patalano, A., Garcia, C.M. and Rodriguez, A. (2017). Rectification of image velocity results(RIVeR):a simple and user-friendly toolbox for large scale water surface particle image velocimetry (PIV) and particle tracking velocimetry (PTV). Computers and Geosciences, 109, 323-330. https://doi.org/10.1016/j.cageo.2017.07.009
  16. Philips, O.M. (1962). Recent developments in the theory of wave generation by wind. Journal of Geophysical Research, 67(8), 3135-3141. https://doi.org/10.1029/JZ067i008p03135
  17. Pollet, I. (1995). Meten van windsnelheden en zandtransport in een windtunnel. MSc Thesis, University Gent.
  18. Sherman, D.I., Li, B., Farrell, E.J., Ellis, J.T., Cox, W.D., Maia, L.P. and Sousa, P.H.G.O. (2011). Measuring aeolian saltation : a comparison of sensors. Journal of Coastal Research, 10059, 280-290. https://doi.org/10.2112/SI59-030.1
  19. Stokes, G.G. (1851). On the effect of the internal friction of fluids on the motion of pendulums. Transactions of Cambridge Philosophical Society, Part II. 9, 8-106.
  20. van Rijn, L.C. and Strypsteen, G. (2020). A fully predictive model for aeolian sand transport. Coastal Engineering, 156, 103600.
  21. van der Linden, E.J. (1985). Winderosie, De ontwikkeling van een sedimentvanger : de Muis. MSc Thesis, Agricultural University Wageningen.
  22. Yoon, B.M. and Noh, Y. (2003). Outlines of large scale particle image velocimetry (LSPIV) and its applications. Journal of The Korean Society of Visualization, 1(2), 13-16 (in Korean).