DOI QR코드

DOI QR Code

Establishment of a BaTiO3-based Computational Science Platform to Predict Multi-component Properties

다성분계 물성을 예측하기 위한 BaTiO3기반 계산과학 플랫폼 구축

  • Lee, Dong Geon (Center of Materials Digitalization, Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Lee, Han Uk (Center of Materials Digitalization, Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Im, Won Bin (Division of Materials Science and Engineering, Hanyang University) ;
  • Ko, Hyunseok (Center of Materials Digitalization, Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Cho, Sung Beom (Center of Materials Digitalization, Korea Institute of Ceramic Engineering and Technology (KICET))
  • Received : 2022.08.17
  • Accepted : 2022.08.22
  • Published : 2022.09.30

Abstract

Barium titanate (BaTiO3) is considered to be a beneficial ceramic material for multilayer ceramic capacitor (MLCC) applications because of its high dielectric constant and low dielectric loss. Numerous attempts have been made to improve the physical properties of BaTiO3 in response to recent market trends by employing multicomponent alloying strategies. However, owing to its significant number of atomic combinations and unpredictable physical properties, finding a traditional experimental approach to develop multicomponent systems is difficult; the development of such systems is also time-consuming. In this study, 168 new structures were fabricated using special quasi-random structures (SQSs) of Ba1-xCaxTi1-yZryO3, and 1680 physical properties were extracted from first-principles calculations. In addition, we built an integrated database to manage the computational results, and will provide big data solutions by performing data analysis combined with AI modeling. We believe that our research will enable the global materials market to realize digital transformation through datalization and intelligence of the material development process.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 가상공학플랫폼 구축사업(P0022336)의 지원을 통해 수행되었습니다.

References

  1. H. Jaffe, "Titanate Ceramics for Electromechanical Purposes", Ind. Eng. Chem., Vol. 42, No. 2, pp. 264-268, 1950. https://doi.org/10.1021/ie50482a020
  2. G.-J. Lee, H.-P. Kim, S.-G. Lee, H.-Y. Lee, and W. Jo, "Depolarization Mechanism of Alternating-current-poled Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystals Measured using in-situ thermally Stimulated Depolarization Current", Sens. Sci. Technol., Vol. 29, No. 1, p. 4, 2020.
  3. J.-H. Lee, G.-J. Lee, T.-L. Pham, J.-S. Lee, and W. Jo, "Suppression of Dielectric Loss at High Temperature in (Bi1/2Na1/2)TiO3 Ceramic by Controlling A-site Cation Deficiency and Heat Treatment", Sens. Sci. Technol., Vol. 29, No. 1, p. 7, 2020. https://doi.org/10.5369/JSST.2019.29.1.7
  4. H. Kishi, N. Kohzu, Y. Iguchi, J. Sugino, M. Kato, H. Ohsato, and T. Okuda, "Occupational sites and dielectric properties of rare-earth and Mn substituted BaTiO3", J. Eur. Ceram. Soc., Vol. 21, No. 1, pp. 1643-1647, 2001. https://doi.org/10.1016/S0955-2219(01)00083-8
  5. S. Kobayashi, K. Inoue, T. Kato, Y. Ikuhara, and T. Yamamoto, "Multiphase nanodomains in a strained BaTiO3 film on a GdScO3 substrate", J. Appl. Phys., Vol. 123, No. 6, p. 064102, 2018. https://doi.org/10.1063/1.5012545
  6. B. S. Kar, M. N. Goswami, and P. C. Jana, "Effects of lanthanum dopants on dielectric and multiferroic properties of BiFeO3-BaTiO3 ceramics", J. Alloys Compd., Vol. 861, p. 157960, 2021. https://doi.org/10.1016/j.jallcom.2020.157960
  7. Y. Yao, C. Zhou, D. Lv, D. Wang, H. Wu, Y. Yang, and X. Ren, "Large piezoelectricity and dielectric permittivity in BaTiO3-xBaSnO3 system: The role of phase coexisting", EPL., Vol. 98, No. 2, p. 27008, 2012. https://doi.org/10.1209/0295-5075/98/27008
  8. M. H. Zhao, D. A. Bonnell, and J. M. Vohs, "Effect of ferroelectric polarization on the adsorption and reaction of ethanol on BaTiO3", Surf. Sci., Vol. 602, No. 17, pp. 2849-2855, 2008. https://doi.org/10.1016/j.susc.2008.07.011
  9. S. Piskunov, E. Heifets, R. I. Eglitis, and G. Borstel, "Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study", Comput. Mater. Sci., Vol. 29, No. 2, pp. 165-178, 2004. https://doi.org/10.1016/j.commatsci.2003.08.036
  10. F. Maldonado and A. Stashans, "DFT study of Ag and La codoped BaTiO3", J. Phys. Chem. Sol., Vol. 102, pp. 136-141, 2017. https://doi.org/10.1016/j.jpcs.2016.11.016
  11. M. Rizwan, Hajra, I. Zeba, M. Shakil, S. S. A. Gillani, and Z. Usman, "Electronic, structural and optical properties of BaTiO3 doped with lanthanum (La): Insight from DFT calculation", Optik., Vol. 211, p. 164611, 2020. https://doi.org/10.1016/j.ijleo.2020.164611
  12. G. Kresse and J. Furthmuller, "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set", Phys. Rev. B., Vol. 54, No. 16, pp. 11169-11186, 1996. https://doi.org/10.1103/PhysRevB.54.11169
  13. P. E. Blochl, "Projector augmented-wave method", Phys. Rev. B., Vol. 50, No. 24, pp. 17953-17979, 1994. https://doi.org/10.1103/PhysRevB.50.17953
  14. M. R. Panigrahi, and S. Panigrahi, "Synthesis and microstructure of Ca-doped BaTiO3 ceramics prepared by highenergy ball-milling", Phys. B: Condensed Matter, Vol. 404, No. 21, pp. 4267-4272, 2009. https://doi.org/10.1016/j.physb.2009.08.012
  15. J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple", Phys. Rev. Lett., Vol. 77, No. 18, pp. 3865-3868, 1996. https://doi.org/10.1103/PhysRevLett.77.3865
  16. V. I. Anisimov, J. Zaanen, and O. K. Andersen, "Band theory and Mott insulators: Hubbard U instead of Stoner I", Phys. Rev. B, Vol. 44, No. 3, pp. 943-954, 1991. https://doi.org/10.1103/PhysRevB.44.943
  17. A. Zunger, S. H. Wei, L. G. Ferreira, and J. E. Bernard, "Special quasirandom structures", Phys. Rev. Lett., Vol. 65, No. 3, pp. 353-356, 1990. https://doi.org/10.1103/PhysRevLett.65.353
  18. A. van de Walle, P. Tiwary, M. de Jong, D. L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L. Q. Chen and Z. K. Liu, "Efficient stochastic generation of special quasirandom structures", Calphad, Vol. 42, pp. 13-18, 2013. https://doi.org/10.1016/j.calphad.2013.06.006
  19. C. Kim, G. Pilania, and R. Ramprasad, "From Organized High-Throughput Data to Phenomenological Theory using Machine Learning: The Example of Dielectric Breakdown", Chem. Mater., Vol. 28, No. 5, pp. 1304-1311, 2016. https://doi.org/10.1021/acs.chemmater.5b04109
  20. A. Takahashi, Y. Kumagai, J. Miyamoto, Y. Mochizuki, and F. Oba, "Machine learning models for predicting the dielectric constants of oxides based on high-throughput first-principles calculations", Phys. Rev. Mater., Vol. 4, No. 10, p. 103801, 2020. https://doi.org/10.1103/PhysRevMaterials.4.103801
  21. S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson and G. Ceder, "Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis", Comput. Mater. Sci., Vol. 68, pp. 314-319, 2013. https://doi.org/10.1016/j.commatsci.2012.10.028