Browse > Article
http://dx.doi.org/10.46670/JSST.2022.31.5.318

Establishment of a BaTiO3-based Computational Science Platform to Predict Multi-component Properties  

Lee, Dong Geon (Center of Materials Digitalization, Korea Institute of Ceramic Engineering and Technology (KICET))
Lee, Han Uk (Center of Materials Digitalization, Korea Institute of Ceramic Engineering and Technology (KICET))
Im, Won Bin (Division of Materials Science and Engineering, Hanyang University)
Ko, Hyunseok (Center of Materials Digitalization, Korea Institute of Ceramic Engineering and Technology (KICET))
Cho, Sung Beom (Center of Materials Digitalization, Korea Institute of Ceramic Engineering and Technology (KICET))
Publication Information
Journal of Sensor Science and Technology / v.31, no.5, 2022 , pp. 318-323 More about this Journal
Abstract
Barium titanate (BaTiO3) is considered to be a beneficial ceramic material for multilayer ceramic capacitor (MLCC) applications because of its high dielectric constant and low dielectric loss. Numerous attempts have been made to improve the physical properties of BaTiO3 in response to recent market trends by employing multicomponent alloying strategies. However, owing to its significant number of atomic combinations and unpredictable physical properties, finding a traditional experimental approach to develop multicomponent systems is difficult; the development of such systems is also time-consuming. In this study, 168 new structures were fabricated using special quasi-random structures (SQSs) of Ba1-xCaxTi1-yZryO3, and 1680 physical properties were extracted from first-principles calculations. In addition, we built an integrated database to manage the computational results, and will provide big data solutions by performing data analysis combined with AI modeling. We believe that our research will enable the global materials market to realize digital transformation through datalization and intelligence of the material development process.
Keywords
Multilayer ceramic capacitors; $BaTiO_3$ material; Special quasirandom structures; The first-principles calculations;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 C. Kim, G. Pilania, and R. Ramprasad, "From Organized High-Throughput Data to Phenomenological Theory using Machine Learning: The Example of Dielectric Breakdown", Chem. Mater., Vol. 28, No. 5, pp. 1304-1311, 2016.   DOI
2 S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson and G. Ceder, "Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis", Comput. Mater. Sci., Vol. 68, pp. 314-319, 2013.   DOI
3 J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple", Phys. Rev. Lett., Vol. 77, No. 18, pp. 3865-3868, 1996.   DOI
4 B. S. Kar, M. N. Goswami, and P. C. Jana, "Effects of lanthanum dopants on dielectric and multiferroic properties of BiFeO3-BaTiO3 ceramics", J. Alloys Compd., Vol. 861, p. 157960, 2021.   DOI
5 Y. Yao, C. Zhou, D. Lv, D. Wang, H. Wu, Y. Yang, and X. Ren, "Large piezoelectricity and dielectric permittivity in BaTiO3-xBaSnO3 system: The role of phase coexisting", EPL., Vol. 98, No. 2, p. 27008, 2012.   DOI
6 S. Piskunov, E. Heifets, R. I. Eglitis, and G. Borstel, "Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study", Comput. Mater. Sci., Vol. 29, No. 2, pp. 165-178, 2004.   DOI
7 F. Maldonado and A. Stashans, "DFT study of Ag and La codoped BaTiO3", J. Phys. Chem. Sol., Vol. 102, pp. 136-141, 2017.   DOI
8 M. Rizwan, Hajra, I. Zeba, M. Shakil, S. S. A. Gillani, and Z. Usman, "Electronic, structural and optical properties of BaTiO3 doped with lanthanum (La): Insight from DFT calculation", Optik., Vol. 211, p. 164611, 2020.   DOI
9 G. Kresse and J. Furthmuller, "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set", Phys. Rev. B., Vol. 54, No. 16, pp. 11169-11186, 1996.   DOI
10 P. E. Blochl, "Projector augmented-wave method", Phys. Rev. B., Vol. 50, No. 24, pp. 17953-17979, 1994.   DOI
11 G.-J. Lee, H.-P. Kim, S.-G. Lee, H.-Y. Lee, and W. Jo, "Depolarization Mechanism of Alternating-current-poled Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystals Measured using in-situ thermally Stimulated Depolarization Current", Sens. Sci. Technol., Vol. 29, No. 1, p. 4, 2020.
12 S. Kobayashi, K. Inoue, T. Kato, Y. Ikuhara, and T. Yamamoto, "Multiphase nanodomains in a strained BaTiO3 film on a GdScO3 substrate", J. Appl. Phys., Vol. 123, No. 6, p. 064102, 2018.   DOI
13 M. H. Zhao, D. A. Bonnell, and J. M. Vohs, "Effect of ferroelectric polarization on the adsorption and reaction of ethanol on BaTiO3", Surf. Sci., Vol. 602, No. 17, pp. 2849-2855, 2008.   DOI
14 A. Zunger, S. H. Wei, L. G. Ferreira, and J. E. Bernard, "Special quasirandom structures", Phys. Rev. Lett., Vol. 65, No. 3, pp. 353-356, 1990.   DOI
15 J.-H. Lee, G.-J. Lee, T.-L. Pham, J.-S. Lee, and W. Jo, "Suppression of Dielectric Loss at High Temperature in (Bi1/2Na1/2)TiO3 Ceramic by Controlling A-site Cation Deficiency and Heat Treatment", Sens. Sci. Technol., Vol. 29, No. 1, p. 7, 2020.   DOI
16 M. R. Panigrahi, and S. Panigrahi, "Synthesis and microstructure of Ca-doped BaTiO3 ceramics prepared by highenergy ball-milling", Phys. B: Condensed Matter, Vol. 404, No. 21, pp. 4267-4272, 2009.   DOI
17 V. I. Anisimov, J. Zaanen, and O. K. Andersen, "Band theory and Mott insulators: Hubbard U instead of Stoner I", Phys. Rev. B, Vol. 44, No. 3, pp. 943-954, 1991.   DOI
18 A. van de Walle, P. Tiwary, M. de Jong, D. L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L. Q. Chen and Z. K. Liu, "Efficient stochastic generation of special quasirandom structures", Calphad, Vol. 42, pp. 13-18, 2013.   DOI
19 A. Takahashi, Y. Kumagai, J. Miyamoto, Y. Mochizuki, and F. Oba, "Machine learning models for predicting the dielectric constants of oxides based on high-throughput first-principles calculations", Phys. Rev. Mater., Vol. 4, No. 10, p. 103801, 2020.   DOI
20 H. Jaffe, "Titanate Ceramics for Electromechanical Purposes", Ind. Eng. Chem., Vol. 42, No. 2, pp. 264-268, 1950.   DOI
21 H. Kishi, N. Kohzu, Y. Iguchi, J. Sugino, M. Kato, H. Ohsato, and T. Okuda, "Occupational sites and dielectric properties of rare-earth and Mn substituted BaTiO3", J. Eur. Ceram. Soc., Vol. 21, No. 1, pp. 1643-1647, 2001.   DOI