DOI QR코드

DOI QR Code

궐련형 담배 바이오매스 기반의 슈퍼커패시터용 탄소의 제조 및 응용

Preparation of Heated Tobacco Biomass-derived Carbon Material for Supercapacitor Application

  • 김지원 (한밭대학교 화학생명공학과) ;
  • 제갈석 (한밭대학교 화학생명공학과) ;
  • 김동현 (한밭대학교 화학생명공학과) ;
  • 윤창민 (한밭대학교 화학생명공학과)
  • Kim, Jiwon (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Jekal, Suk (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Kim, Dong Hyun (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Yoon, Chang-Min (Department of Chemical and Biological Engineering, Hanbat National University)
  • 투고 : 2022.04.07
  • 심사 : 2022.04.22
  • 발행 : 2022.06.30

초록

본 연구에서는 궐련형 담배의 담뱃잎 바이오매스 폐기물을 수거하여 슈퍼커패시터용 활물질로 제조 및 응용하였다. 수거한 담뱃잎 폐기물을 질소 환경에서 다양한 온도(800/850/950℃)로 탄화하였으며, 탄소/산소 성분비(C/O ratio) 분석을 통해 850℃에서 가장 우수한 품질의 탄소 물질이 제조되었음을 확인하였다. 추가적으로 담뱃잎 기반의 탄소 물질에 폴리피롤(Polypyrrole)을 저온중합법을 통해 코팅하여 전기화학적 성능을 향상시켰다. 탄소 물질(CTL-850)과 폴리피롤을 코팅한 탄소 물질(CTL-850/PPy)을 기반으로 한 전극의 전기화학적 성능을 측정한 결과, -1.0-0.0V와 0.0-1.0V의 전위창에서 각각 100.2F g-1@1 A g-1과 155.3F g-1@1 A g-1의 우수한 비정전용량(Specific capacitance)를 나타내었다. 두 개의 전극을 활용하여 비대칭형 슈퍼커패시터 소자(Asymmetric supercapacitor device)를 제작하였으며, 제조한 비대칭형 CTL-850//CTL-850/PPy 소자는 2.0V의 구동전압 범위와 비정전용량(31.1F g-1@1 A g-1)을 가지고 있음을 확인하였다. 또한, 제조한 슈퍼커패시터 소자의 방전을 통해 1.8V의 Red Led를 점등할 수 있음을 확인하였다. 본 연구 결과를 통해 바이오매스를 우수한 성능의 친환경 에너지 저장매체로 활용하는 후속 연구에 대한 방향성을 제시할 수 있을 것으로 판단된다.

In this study, heated tobacco biomass was prepared as an active material for supercapacitor device. Retrieved tobacco leaf from the heated tobacco was carbonized at various temperature(800/850/950℃). Carbonized tobacco leaf material synthesized at 850℃ exhibited the highest C/O ratio, indicating the finest carbon quality. In addition, polypyrrole was coated onto the carbonized leaf material for increasing the electrochemical performance via low-temperature polymerization method. As-synthesized carbonized leaf material at 850℃(CTL-850)-based electrode and polypyrrole-coated carbonized leaf material(CTL-850/PPy)-based electrode displayed outstanding specific capacitances of 100.2 and 155.3F g-1 at 1 A g-1 with opertaing window of -1.0V and 1.0V. Asymmetric supercapacitor device, assembled with CTL-850 as the negative electrode and CTL-850/PPy as the positive electrode, manifested specific capacitance of 31.1F g-1(@1 A g-1) with widened operating voltage window of 2.0V. Moreover, as-prepared asymmetric supercapacitor device was able to lighten up the RED Led (1.8V), suggesting the high capacitance and extension of operating voltage window. The result of this research may help to pave the new possibility toward preparing the effective energy storage device material recycling the biomass.

키워드

과제정보

본 과제(결과물)는 2021년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다.(과제번호: 2021RIS-004)

참고문헌

  1. Qu, S., Wan, J., Dai, C., Jin, T. and Ma, F., "Promising as high-performance supercapacitor electrode materials porous carbons derived from biological lotus leaf", Journal of Alloys and Compounds, 751, pp. 107~116. (2018). https://doi.org/10.1016/j.jallcom.2018.04.123
  2. Cherubini, F., Peters, G. P., Berntsen, T., Stromman, A. H. and Hertwich, E., "CO2 emissions from biomass combustion for bioenergy: Atmospheric decay and contribution to global warming", GCB Bioenergy, 3(5), pp. 413~426. (2011). https://doi.org/10.1111/j.1757-1707.2011.01102.x
  3. Stocker, M., "Biofuels and Biomass-To-Liquid Fuels in the Biorefinery: Catalytic Conversion of Lignocellulosic Biomass using Porous Materials", Angewandte Chemie, 47(48), pp. 9200~9211. (2008). https://doi.org/10.1002/anie.200801476
  4. Novotny, T. E. and Slaughter, E., "Tobacco Product Waste: An Environmental Approach to Reduce Tobacco Consumption", Current Environmental Health Reports, 1(3), pp. 208~216. (2014). https://doi.org/10.1007/s40572-014-0016-x
  5. Mumba, P. P. and Phiri, R., "Environmental Impact Assessment of Tobacco Waste Disposal", International Journal of Environmental Research, 2(3), pp. 225~230. (2008).
  6. Lee, M., Kim, G.-P., Song, H. D., Park, S. and Yi, J., "Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode", Nanotechnology, 25(34), p. 345601. (2014). https://doi.org/10.1088/0957-4484/25/34/345601
  7. Gu, J., Abroms, L. C., Broniatowski, D. A. and Evans, W. D., "An Investigation of Influential Users in the Promotion and Marketing of Heated Tobacco Products on Instagram: A Social Network Analysis", International Journal of Environmental Research and Public Health, 19(3), p. 1686. (2022). https://doi.org/10.3390/ijerph19031686
  8. Raza, W., Ali, F., Raza, N., Luo, Y., Kim, K.-H., Yang, J., Kumar, S., Mehmood, A. and Kwon, E. E., "Recent advancements in supercapacitor technology", Nano Energy, 52, pp. 441~473. (2018). https://doi.org/10.1016/j.nanoen.2018.08.013
  9. Ahmad, R., Khan, U. A., Iqbal, N. and Noor, T., "Zeolitic imidazolate framework (ZIF)-derived porous carbon materials for supercapacitors: An overview", Royal Society of Chemisty, 10(71), pp. 43733~43750. (2020).
  10. Du, C., Yeh, J. and Pan, N., "High power density supercapacitors using locally aligned carbon nanotube electrodes", Nanotechnology, 16(4), pp. 350~353. (2005). https://doi.org/10.1088/0957-4484/16/4/003
  11. Liu, C., Yu, Z., Neff, D., Zhamu, A. and Jang, B. Z., "Graphene-Based Supercapacitor with an Ultrahigh Energy Density", Nano Letters, 10(12), pp. 4863~4868. (2010). https://doi.org/10.1021/nl102661q
  12. Frackowiak, E., "Carbon materials for supercapacitor application", Physical Chemistry Chemical Physics, 9(15), pp. 1774~1785. (2007). https://doi.org/10.1039/b618139m
  13. Zhang, L. L. and Zhao, X. S., "Carbon-based materials as supercapacitor electrodes", Chemical Society Reviews, 38(9), pp. 2520~2531. (2009). https://doi.org/10.1039/b813846j
  14. Ji, H., Zhao, X., Qiao, Z., Jung, J., Zhu, Y., Lu, Y., Zhang, L. L., MacDonald, A. H. and Ruoff, R. S., "Capacitance of carbon-based electrical double-layer capacitors", Nature Communications, 5(1), p. 3317. (2014). https://doi.org/10.1038/ncomms4317
  15. Augustyn, V., Simon, P. and Dunn, B., "Pseudocapacitive oxide materials for high-rate electrochemical energy storage", Energy & Environmental Science, 7(5), pp. 1597~1614. (2014). https://doi.org/10.1039/c3ee44164d
  16. Wu, S. and Zhu, Y., "Highly densified carbon electrode materials towards practical supercapacitor devices", Science China Materials, 60(1), pp. 25~38 (2017). https://doi.org/10.1007/s40843-016-5109-4
  17. Thirumal, V., Yuvakkumar, R., Ravi, G., Dineshkumar, G., Ganesan, M., Alotaibi, S. H. and Velauthapillai, D., "Characterization of activated biomass carbon from tea leaf for supercapacitor applications", Chemosphere, 291(21), p. 132931. (2022). https://doi.org/10.1016/j.chemosphere.2021.132931
  18. Yun, Y. S., Park, M. H., Hong, S. J., Lee, M. E., Park, Y. W. and Jin, H.-J., "Hierarchically Porous Carbon Nanosheets from Waste Coffee Grounds for Supercapacitors", ACS Applied Materials & Interfaces, 7(6), pp. 3684~3690. (2015). https://doi.org/10.1021/am5081919
  19. Woo, G. J. and Kim, Y.-M., "Effect of Torrefaction on the Catalytic Pyrolysis of Miscanthus over HZSM-5 and HY", Journal of Korea Society of Waste Management, 37(8), pp. 542~548. (2020). https://doi.org/10.9786/kswm.2020.37.8.542
  20. Park, D. K., Kim, D., Gu, J.-H. and Lee, S.-F., "Torrefaction Characteristics of Waste Biomass Derived from Livestock Manure", Journal of Korea Society of Waste Management, 37(5), pp. 366~373. (2020). https://doi.org/10.9786/kswm.2020.37.5.366
  21. Xu, J., Wang, D., Yuan, Y., Wei, W., Duan, L., Wang, L., Bao, H. and Xu, W., "Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application", Organic Electronics, 24, pp. 153~159. (2015). https://doi.org/10.1016/j.orgel.2015.05.037
  22. Kim, S. Y., Hong, J. and Palmore, G. T., "Polypyrrole decorated cellulose for energy storage applications", Synthetic Metals, 162(15-16), pp. 1478~1481. (2012). https://doi.org/10.1016/j.synthmet.2012.06.003
  23. Peng, Z., Wang, C., Zhang, Z. and Zhong, W., "Synthesis and Enhancement of Electroactive Biomass/Polypyrrole Hydrogels for High Performance Flexible All-Solid-State Supercapacitors", Advanced Materials Interfaces, 6(23), p. 1901393. (2019). https://doi.org/10.1002/admi.201901393
  24. Jeon, J.-W., Zhang, L., Lutkenhaus, J. L., Laskar, D. D., Lemmon, J. P., Choi, D., Nandasiri, M. I., Hashmi, A., Xu, J., Motkuri, R. K., Fernandez, C. A., Liu, J., Tucker, M. P., McGrail, P. B., Yang, B. and Nune, S. K., "Controlling Porosity in Lignin-Derived Nanoporous Carbon for Supercapacitor Applications", ChemSusChem, 8(3), pp. 428~432. (2015). https://doi.org/10.1002/cssc.201402621
  25. An, H. J., Kim, N. R., Song, M. Y., Yun, Y. S. and Jin, H.-J., "Fallen-leaf-derived microporous pyropolymers for supercapacitors", Journal of Industrial and Engineering Chemistry, 45, pp. 223~228. (2017). https://doi.org/10.1016/j.jiec.2016.09.026
  26. Chew, S. Y., Feng, C., Ng, S. H., Wang, J., Guo, Z. and Liu, H., "Low-Temperature Synthesis of Polypyrrole-Coated LiV3O8 Composite with Enhanced Electrochemical Properties", Journal of The Electrochemical Society, 154(7), pp. A633~A637. (2007). https://doi.org/10.1149/1.2734778
  27. Choi, M., Lim, B. and Jang, J., "Synthesis of Mesostructured Conducting Polymer-Carbon Nanocomposites and Their Electrochemical Performance", Macromolecular Research, 16(3), pp. 200~203. (2008). https://doi.org/10.1007/BF03218853
  28. Majumdar, S., Sen, P. and Ray, R., "Graphene oxide induced high dielectricity in CS/PMMA solid polymer electrolytes and the enhanced specific capacitance with Ag decorated MnCoFeO4 nanoparticles anchored graphene sheets in hybrid solid-state supercapacitors", Materials Research Bulletin, 151, p. 111814. (2022). https://doi.org/10.1016/j.materresbull.2022.111814
  29. Xiong, Q., He, H. and Zhang, M., "Design of Flexible Films Based on Kinked Carbon Nanofibers for High Rate and Stable Potassium-Ion Storage", Nano-Micro Letters, 14(1), p. 47. (2022). https://doi.org/10.1007/s40820-022-00791-y
  30. Gangoli, V. S., Barnett, C. J., McGettrick, J. D., White, A. O. and Barron, A. R., "Increased Electrical Conductivity of Carbon Nanotube Fibers by Thermal and Voltage Annealing", Journal of Carbon Research, 8(1), p. 1. (2021). https://doi.org/10.3390/c8010001
  31. Zhao, F., Ling, L., Liu, L., Zafar, A. and Ni, Z., "The dispersion of graphene in conductive epoxy composites investigated by Raman spectroscopy", Journal of Raman Spectroscopy, 48(3), pp. 432~436. (2017). https://doi.org/10.1002/jrs.5041
  32. Li, W., Zhang, L., Peng, J., Li, N., Zhang, S. and Guo, S., "Effects of microwave irradiation on the basic properties of woodceramics made from carbonized tobacco stems impregnated with phenolic resin", Industrial Crops and Products, 28(2), pp. 143~154. (2008). https://doi.org/10.1016/j.indcrop.2008.02.002
  33. Wang, C., Zhan, Y., Wu, L., Li, Y. and Liu, J., "Highvoltage and high-rate symmetric supercapacitor based on MnO2-polypyrrole hybrid nanofilm", Nanotechnology, 25(30), p. 305401. (2014). https://doi.org/10.1088/0957-4484/25/30/305401
  34. Zhang, D., Tan, C., Zhang, W., Pan, W., Wang, Q. and Li, L., "Expanded Graphite-Based Materials for Supercapacitors: A Review", Molecules, 27(3), p. 716. (2022). https://doi.org/10.3390/molecules27030716
  35. Zhu, Y., Zong, Q., Zhang, Q., Yang, H., Du, W., Wang, Q., Zhan, J. and Wang, H., "Ultra-long lifespan asymmetrical hybrid supercapacitor device based on hierarchical NiCoP@C@LDHs electrode", Electrochimica Acta, 334(8), p. 135589. (2020). https://doi.org/10.1016/j.electacta.2019.135589
  36. Yan, J., Fan, Z., Sun, W., Ning, G., Wei, T., Zhang, Q., Zhang, R., Zhi, L. and Wei, F., "Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density", Advanced Functional Materials, 22(12), pp. 2632~2641. (2012). https://doi.org/10.1002/adfm.201102839
  37. Khomenko, V., Raymundo-pinero, E. and Beguin, F., "Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium", Journal of Power Sources, 153(1), pp. 183~190. (2006). https://doi.org/10.1016/j.jpowsour.2005.03.210